BACK TO INDEX

Publications about 'reverse engineering'
Articles in journal or book chapters
  1. P. Bastiaens, M. R. Birtwistle, N. Bluthgen, F. J. Bruggeman, K.-H. Cho, C. Cosentino, A. de la Fuente, J. B. Hoek, A. Kiyatkin, S. Klamt, W. Kolch, S. Legewie, P. Mendes, T. Naka, T. Santra, E.D. Sontag, H. V. Westerhoff, and B. N. Kholodenko. Silence on the relevant literature and errors in implementation. Nature Biotech, 33:336-339, 2015. [PDF] Keyword(s): modular response analysis, systems biology, biochemical networks, reverse engineering, gene and protein networks, protein networks, gene networks, systems identification.
    Abstract:
    This letter discusses a paper in the same journal which reported a method for reconstructing network topologies. Here we show that the method is a variant of a previously published method, modular response analysis. We also demonstrate that the implementation of the algorithm in that paper using statistical similarity measures as a proxy for global network responses to perturbations is erroneous and its performance is overestimated.


  2. T. Kang, R. Moore, Y. Li, E.D. Sontag, and L. Bleris. Discriminating direct and indirect connectivities in biological networks. Proc Natl Acad Sci USA, 112:12893-12898, 2015. [PDF] Keyword(s): modular response analysis, stochastic systems, reverse engineering, gene networks, synthetic biology, feedforward, systems biology.
    Abstract:
    Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. In this work, we engineer synthetic circuits, subject them to perturbations, and then infer network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discover that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between different topologies. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks.


  3. S. Prabakaran, J. Gunawardena, and E.D. Sontag. Paradoxical results in perturbation-based signaling network reconstruction. Biophysical Journal, 106:2720-2728, 2014. [PDF] Keyword(s): stoichiometry, MAPK cascades, systems biology, biochemical networks, gene and protein networks, reverse engineering, systems identification, retroactivity.
    Abstract:
    This paper describes a potential pitfall of perturbation-based approaches to network inference It is shows experimentally, and then explained mathematically, how even in the simplest signaling systems, perturbation methods may lead to paradoxical conclusions: for any given pair of two components X and Y, and depending upon the specific intervention on Y, either an activation or a repression of X could be inferred. The experiments are performed in an in vitro minimal system, thus isolating the effect and showing that it cannot be explained by feedbacks due to unknown intermediates; this system utilizes proteins from a pathway in mammalian (and other eukaryotic) cells that play a central role in proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis and is a perturbation target of contemporary therapies for various types of cancers. The results show that the simplistic view of intracellular signaling networks being made up of activation and repression links is seriously misleading, and call for a fundamental rethinking of signaling network analysis and inference methods.


  4. D. Angeli and E.D. Sontag. Behavior of responses of monotone and sign-definite systems. In K. Hüper and Jochen Trumpf, editors, Mathematical System Theory - Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pages 51-64. CreateSpace, 2013. [PDF] Keyword(s): monotone systems, reverse engineering, systems biology.
    Abstract:
    This paper study systems with sign-definite interactions between variables, providing a sufficient condition to characterize the possible transitions between intervals of increasing and decreasing behavior. It also provides a discussion illustrating how our approach can help identify interactions in models, using information from time series of observations.


  5. T. Kang, J.T. White, Z. Xie, Y. Benenson, E.D. Sontag, and L. Bleris. Reverse engineering validation using a benchmark synthetic gene circuit in human cells. ACS Synthetic Biology, 2:255-262, 2013. [PDF] Keyword(s): reverse engineering, systems biology, synthetic biology.
    Abstract:
    This work introduces an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.


  6. B. Dasgupta, P. Vera-Licona, and E.D. Sontag. Reverse engineering of molecular networks from a common combinatorial approach. In M. Elloumi and A.Y. Zomaya, editors, Algorithms in computational molecular biology: Techniques, Approaches and Applications, pages 941-954. Wiley, Hoboken, 2010. [PDF] Keyword(s): reverse engineering, systems biology.


  7. E.D. Sontag. Network reconstruction based on steady-state data. Essays in Biochemistry, 45:161-176, 2008. [PDF] Keyword(s): modular response analysis, systems biology, biochemical networks, reverse engineering, gene and protein networks, protein networks, gene networks, systems identification, MAPK cascades.
    Abstract:
    The ``reverse engineering problem'' in systems biology is that of unraveling of the web of interactions among the components of protein and gene regulatory networks, so as to map out the direct or local interactions among components. These direct interactions capture the topology of the functional network. An intrinsic difficulty in capturing these direct interactions, at least in intact cells, is that any perturbation to a particular gene or signaling component may rapidly propagate throughout the network, thus causing global changes which cannot be easily distinguished from direct effects. Thus, a major goal in reverse engineering is to use these observed global responses - such as steady-state changes in concentrations of active proteins, mRNA levels, or transcription rates - in order to infer the local interactions between individual nodes. One approach to solving this global-to-local problem is the ``Modular Response Analysis'' (MRA) method proposed in work of the author with Kholodenko et. al. (PNAS, 2002) and further elaborated in other papers. The basic method deals only with steady-state data. However, recently, quasi-steady state MRA has been used by Santos et. al. (Nature Cell Biology, 2007) for quantifying positive and negative feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromocytoma (PC-12) cells. This paper presents an overview of the MRA technique, as well as a generalization of the algorithm to that quasi-steady state case.


  8. P. Berman, B. Dasgupta, and E.D. Sontag. Algorithmic issues in reverse engineering of protein and gene networks via the modular response analysis method. Annals of the NY Academy of Sciences, 1115:132-141, 2007. [PDF] Keyword(s): systems biology, biochemical networks, gene and protein networks, reverse engineering, systems identification, graph algorithms.
    Abstract:
    This paper studies a computational problem motivated by the modular response analysis method for reverse engineering of protein and gene networks. This set-cover problem is hard to solve exactly for large networks, but efficient approximation algorithms are given and their complexity is analyzed.


  9. P. Berman, B. Dasgupta, and E.D. Sontag. Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks. Discrete Applied Mathematics Special Series on Computational Molecular Biology, 155:733-749, 2007. [PDF] Keyword(s): systems biology, biochemical networks, gene and protein networks, systems identification, reverse engineering.
    Abstract:
    This paper investigates computational complexity aspects of a combinatorial problem that arises in the reverse engineering of protein and gene networks, showing relations to an appropriate set multicover problem with large "coverage" factor, and providing a non-trivial analysis of a simple randomized polynomial-time approximation algorithm for the problem.


  10. B. Dasgupta, P. Berman, and E.D. Sontag. Computational complexities of combinatorial problems with applications to reverse engineering of biological networks. In D. Liu and F-Y. Wan, editors, Advances in Computational Intelligence: Theory & Applications, pages 303-316. World Scientific, Hackensack, 2006. Keyword(s): systems biology, biochemical networks, gene and protein networks, reverse engineering, systems identification, theory of computing and complexity.


  11. M. Andrec, B.N. Kholodenko, R.M. Levy, and E.D. Sontag. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J. Theoret. Biol., 232(3):427-441, 2005. Note: Supplementary materials are here: http://sontaglab.org/FTPDIR/andrec-kholodenko-levy-sontag-JTB04-supplementary.pdf. [PDF] Keyword(s): systems biology, biochemical networks, gene and protein networks, systems identification, reverse engineering, modular response analysis, systems biology, biochemical networks, reverse engineering, gene and protein networks, protein networks, gene networks, systems identification.
    Abstract:
    One of the fundamental problems of cell biology is the understanding of complex regulatory networks. Such networks are ubiquitous in cells, and knowledge of their properties is essential for the understanding of cellular behavior. This paper studies the effect of experimental uncertainty on the accuracy of the inferred structure of the networks determined using the method in "Untangling the wires: a novel strategy to trace functional interactions in signaling and gene networks".


  12. E.D. Sontag, A. Kiyatkin, and B.N. Kholodenko. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics, 20(12):1877-1886, 2004. Note: Supplementary materials are here: http://sontaglab.org/FTPDIR/sontag-kiyatkin-kholodenko-informatics04-supplement.pdf. [PDF] [doi:http://dx.doi.org/10.1093/bioinformatics/bth173] Keyword(s): modular response analysis, systems biology, biochemical networks, reverse engineering, gene and protein networks, protein networks, gene networks, systems identification.
    Abstract:
    High-throughput technologies have facilitated the acquisition of large genomics and proteomics data sets. However, these data provide snapshots of cellular behavior, rather than help us reveal causal relations. Here, we propose how these technologies can be utilized to infer the topology and strengths of connections among genes, proteins, and metabolites by monitoring time-dependent responses of cellular networks to experimental interventions. We show that all connections leading to a given network node, e.g., to a particular gene, can be deduced from responses to perturbations none of which directly influences that node, e.g., using strains with knock-outs to other genes. To infer all interactions from stationary data, each node should be perturbed separately or in combination with other nodes. Monitoring time series provides richer information and does not require perturbations to all nodes.


  13. B.N. Kholodenko, A. Kiyatkin, F.J. Bruggeman, E.D. Sontag, H.V. Westerhoff, and J. Hoek. Untangling the wires: a novel strategy to trace functional interactions in signaling and gene networks. Proceedings of the National Academy of Sciences USA, 99:12841-12846, 2002. [PDF] Keyword(s): modular response analysis, MAPK cascades, systems biology, biochemical networks, reverse engineering, gene and protein networks, protein networks, gene networks, systems identification.
    Abstract:
    Emerging technologies have enabled the acquisition of large genomics and proteomics data sets. This paper proposes a novel quantitative method for determining functional interactions in cellular signaling and gene networks. It can be used to explore cell systems at a mechanistic level, or applied within a modular framework, which dramatically decreases the number of variables to be assayed. The topology and strength of network connections are retrieved from experimentally measured network responses to successive perturbations of all modules. In addition, the method can reveal functional interactions even when the components of the system are not all known, in which case some connections retrieved by the analysis will not be direct but correspond to the interaction routes through unidentified elements. The method is tested and illustrated using computer-generated responses of a modeled MAPK cascade and gene network.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Apr 17 19:59:03 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html