BACK TO INDEX

Publications about 'segment polarity network'
Articles in journal or book chapters
  1. A. Dayarian, M. Chaves, E.D. Sontag, and A. M. Sengupta. Shape, Size and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks. PLoS Computational Biology, 5:e10000256, 2009. [PDF] Keyword(s): identifiability, robust, robustness, geometry.
    Abstract:
    The concept of robustness of regulatory networks has received much attention in the last decade. One measure of robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which the system is functional. In recent work, we emphasized that topology and geometry matter, as well as volume. In this paper, and using the segment polarity gene network to illustrate our approach, we show that random walks in parameter space and how they exit the feasible region provide a rich perspective on the different modes of failure of a model. In particular, for the segment polarity network, we found that, between two alternative ways of activating Wingless, one is more robust. Our method provides a more complete measure of robustness to parameter variation. As a general modeling strategy, our approach is an interesting alternative to Boolean representation of biochemical networks.


  2. M. Chaves, E.D. Sontag, and R. Albert. Methods of robustness analysis for Boolean models of gene control networks. IET Systems Biology, 153:154-167, 2006. [PDF] Keyword(s): systems biology, biochemical networks, boolean systems, identifiability, robust, robustness, geometry, Boolean, segment polarity network, gene and protein networks, hybrid systems.
    Abstract:
    As a discrete approach to genetic regulatory networks, Boolean models provide an essential qualitative description of the structure of interactions among genes and proteins. Boolean models generally assume only two possible states (expressed or not expressed) for each gene or protein in the network as well as a high level of synchronization among the various regulatory processes. In this paper, we discuss and compare two possible methods of adapting qualitative models to incorporate the continuous-time character of regulatory networks. The first method consists of introducing asynchronous updates in the Boolean model. In the second method, we adopt the approach introduced by L. Glass to obtain a set of piecewise linear differential equations which continuously describe the states of each gene or protein in the network. We apply both methods to a particular example: a Boolean model of the segment polarity gene network of Drosophila melanogaster. We analyze the dynamics of the model, and provide a theoretical characterization of the model's gene pattern prediction as a function of the timescales of the various processes.


Conference articles
  1. M. Chaves, E.D. Sontag, and R. Albert. Structure and timescale analysis in genetic regulatory networks. In Proc. IEEE Conf. Decision and Control, San Diego, Dec. 2006, pages 2358-2363, 2006. IEEE. [PDF] Keyword(s): genetic regulatory networks, Boolean systems, hybrid systems.
    Abstract:
    This work is concerned with the study of the robustness and fragility of gene regulation networks to variability in the timescales of the distinct biological processes involved. It explores and compares two methods: introducing asynchronous updates in a Boolean model, or integrating the Boolean rules in a continuous, piecewise linear model. As an example, the segment polarity network of the fruit fly is analyzed. A theoretical characterization is given of the model's ability to predict the correct development of the segmented embryo, in terms of the specific timescales of the various regulation interactions.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Sep 24 12:35:49 2020
Author: sontag.


This document was translated from BibTEX by bibtex2html