BACK TO INDEX

Publications of Eduardo D. Sontag jointly with M. Margaliot
Articles in journal or book chapters
  1. M.A. Al-Radhawi, M. Margaliot, and E. D. Sontag. Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach. Royal Society Open Science, 8(9):210878, 2021. [PDF]
    Abstract:
    A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input, the state converges to a unique equilibrium point for any initial condition. We consider the problem of maximizing a weighted average of the system's output along the periodic attractor. The gain of entrainment is the benefit achieved by using a non-constant periodic input relative to a constant input with the same time average. Such a problem amounts to optimal allocation of resources in a periodic manner. We formulate this problem as a periodic optimal control problem, which can be analyzed by means of the Pontryagin maximum principle or solved numerically via powerful software packages. We then apply our framework to a class of nonlinear occupancy models that appear frequently in biological synthesis systems and other applications. We show that, perhaps surprisingly, constant inputs are optimal for various architectures. This suggests that the presence of non-constant periodic signals, which frequently appear in biological occupancy systems, is a signature of an underlying time-varying objective functional being optimized.


  2. M. Margaliot and E.D. Sontag. Revisiting totally positive differential systems: A tutorial and new results. Automatica, 101:1-14, 2019. [PDF] Keyword(s): tridiagonal systems, cooperative systems, monotone systems.
    Abstract:
    A matrix is totally nonnegative (resp., totally positive) if all its minors are nonnegative (resp., positive). This paper draws connections between B. Schwarz's 1970 work on TN and TP matrices to Smillie's 1984 and Smith's 1991 work on stability of nonlinear tridiagonal cooperative systems, simplifying proofs in the later paper and suggesting new research questions.


  3. M. Sadeghi, M.A. Al-Radhawi, M. Margaliot, and E.D. Sontag. No switching policy is optimal for a positive linear system with a bottleneck entrance. IEEE Control Systems Letters, 3:889-894, 2019. Note: (Also in Proc. 2019 IEEE Conf. Decision and Control.). [PDF] Keyword(s): entrainment, switched systems, RFM, ribosome flow model, traffic systems, nonlinear systems, nonlinear control.
    Abstract:
    We consider a nonlinear SISO system that is a cascade of a scalar "bottleneck entrance" with a stable positive linear system. In response to any periodic inflow, all solutions converge to a unique periodic solution with the same period. We study the problem of maximizing the averaged throughput via controlled switching. We compare two strategies: 1) switching between a high and low value, and 2 ~using a constant inflow equal to the prescribed mean value. We show that no possible switching policy can outperform a constant inflow rate, though it can approach it asymptotically. We describe several potential applications of this problem in traffic systems, ribosome flow models, and scheduling at security checks.


  4. Y. Zarai, M. Margaliot, E.D. Sontag, and T. Tuller. Controllability analysis and control synthesis for the ribosome flow model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15:1351-1364, 2018. [PDF] Keyword(s): systems biology, ribosomes, controllability, RFM, ribosome flow model.
    Abstract:
    The ribosomal density along the coding region of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, organismal fitness, ribosomal drop off, and co-translational protein folding. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. This paper studies this problem formulated in the context of the ribosome flow model (RFM) in which one views the transition rates between site as controls.


  5. M. Margaliot, E.D. Sontag, and T. Tuller. Checkable conditions for contraction after small transients in time and amplitude. In N. Petit, editor, Feedback Stabilization of Controlled Dynamical Systems - In Honor of Laurent Praly, volume 473 of Lecture Notes in Control and Inform. Sci., pages 279-305. Springer-Verlag, Berlin, 2017. [PDF] Keyword(s): contractions, contractive systems, stability.
    Abstract:
    This is an expository paper, which compares in detail various alternative weak contraction ideas for nonlinear system stability.


  6. M. Margaliot, E.D. Sontag, and T. Tuller. Contraction after small transients. Automatica, 67:178-184, 2016. [PDF] Keyword(s): entrainment, nonlinear systems, stability, contractions, contractive systems, systems biology.
    Abstract:
    Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems including convergence to an attractor and entrainment to a periodic excitation. We introduce three new forms of generalized contraction (GC) that are motivated by allowing contraction to take place after small transients in time and/or amplitude. These forms of GC are useful for several reasons. First, allowing small transients does not destroy the asymptotic properties provided by standard contraction. Second, in some cases as we change the parameters in a contractive system it becomes a GC just before it looses contractivity. In this respect, GC is the analogue of marginal stability in Lyapunov stability theory. We provide checkable sufficient conditions for GC, and demonstrate their usefulness using several models from systems biology that are not contractive, with respect to any norm, yet are GC.


  7. A. Raveh, M. Margaliot, E.D. Sontag, and T. Tuller. A model for competition for ribosomes in the cell. Proc. Royal Society Interface, 13:2015.1062, 2016. [PDF] Keyword(s): resource competition, ribosomes, entrainment, nonlinear systems, stability, contractions, contractive systems, systems biology, RFM, ribosome flow model.
    Abstract:
    We develop and analyze a general model for large-scale simultaneous mRNA translation and competition for ribosomes. Such models are especially important when dealing with highly expressed genes, as these consume more resources. For our model, we prove that the compound system always converges to a steady-state and that it always entrains or phase locks to periodically time-varying transition rates in any of the mRNA molecules. We use this model to explore the interactions between the various mRNA molecules and ribosomes at steady-state. We show that increasing the length of an mRNA molecule decreases the production rate of all the mRNAs. Increasing any of the codon translation rates in a specific mRNA molecule yields a local effect: an increase in the translation rate of this mRNA, and also a global effect: the translation rates in the other mRNA molecules all increase or all decrease. These results suggest that the effect of codon decoding rates of endogenous and heterologous mRNAs on protein production might be more complicated than previously thought.


  8. M. Margaliot, E.D. Sontag, and T. Tuller. Entrainment to periodic initiation and transition rates in a computational model for gene translation. PLoS ONE, 9(5):e96039, 2014. [WWW] [PDF] [doi:10.1371/journal.pone.0096039] Keyword(s): ribosomes, entrainment, nonlinear systems, stability, contractions, contractive systems, systems biology, RFM, ribosome flow model.
    Abstract:
    A recent biological study has demonstrated that the gene expression pattern entrains to a periodically varying abundance of tRNA molecules. This motivates developing mathematical tools for analyzing entrainment of translation elongation to intra-cellular signals such as tRNAs levels and other factors affecting translation. We consider a recent deterministic mathematical model for translation called the Ribosome Flow Model (RFM). We analyze this model under the assumption that the elongation rate of the tRNA genes and/or the initiation rate are periodic functions with a common period T. We show that the protein synthesis pattern indeed converges to a unique periodic trajectory with period T. The analysis is based on introducing a novel property of dynamical systems, called contraction after a short transient (CAST), that may be of independent interest. We provide a sufficient condition for CAST and use it to prove that the RFM is CAST, and that this implies entrainment. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and suggest a new approach for engineering genes to obtain a desired, periodic, synthesis rate.


Conference articles
  1. M. Margaliot and E.D. Sontag. Analysis of nonlinear tridiagonal cooperative systems using totally positive linear differential systems. In Proc. 2018 IEEE Conf. Decision and Control, pages 3104-3109, 2018. [PDF] Keyword(s): tridiagonal systems, cooperative systems, monotone systems.
    Abstract:
    This is a conference version of "Revisiting totally positive differential systems: A tutorial and new results".


  2. Y. Zarai, M. Margaliot, E.D. Sontag, and T. Tuller. Controlling the ribosomal density profile in mRNA translation. In Proc. IEEE Conf. Decision and Control, Dec. 2016, pages 4184-4189, 2016. Keyword(s): ribosomes, translation, RFM, ribosome flow model.


  3. E.D. Sontag, M. Margaliot, and T. Tuller. On three generalizations of contraction. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 1539-1544, 2014. Keyword(s): contractions, contractive systems, stability.
    Abstract:
    We introduce three forms of generalized contraction~(GC). Roughly speaking, these are motivated by allowing contraction to take place after small transients in time and/or amplitude. Indeed, contraction is usually used to prove asymptotic properties, like convergence to an attractor or entrainment to a periodic excitation, and allowing initial transients does not affect this asymptotic behavior. We provide sufficient conditions for GC, and demonstrate their usefulness using examples of systems that are not contractive, with respect to any norm, yet are~GC.


Internal reports
  1. M. Margaliot and E.D. Sontag. Compact attractors of an antithetic integral feedback system have a simple structure. Technical report, bioRxiv 2019/868000v1, 2019. [PDF] Keyword(s): Poincare-Bendixson, k-cooperative dynamical systems, sign-regular matrices, synthetic biology, antithetic feedback.
    Abstract:
    Since its introduction by Briat, Gupta and Khammash, the antithetic feedback controller design has attracted considerable attention in both theoretical and experimental systems biology. The case in which the plant is a two-dimensional linear system (making the closed-loop system a nonlinear four-dimensional system) has been analyzed in much detail. This system has a unique equilibrium but, depending on parameters, it may exhibit periodic orbits. This note shows that, for any parameter choices, every bounded trajectory satisfies a Poincare'-Bendixson property: the dynamics in the omega-limit set of any precompact solution is conjugate to the dynamics in a compact invariant subset of a two-dimensional Lipschitz dynamical system, thus precluding chaotic and other strange attractors.


  2. M. Sadeghi, M.A. Al-Radhawi, M. Margaliot, and E.D. Sontag. On the periodic gain of the Ribosome Flow Model. Technical report, bioRxiv 2018/507988, 2018. [PDF] Keyword(s): systems biology, biochemical networks, ribosomes, RFM, ribosome flow model.
    Abstract:
    We consider a compartmental model for ribosome flow during RNA translation, the Ribosome Flow Model (RFM). This model includes a set of positive transition rates that control the flow from every site to the consecutive site. It has been shown that when these rates are time-varying and jointly T-periodic, the protein production rate converges to a unique T-periodic pattern. Here, we study a problem that can be roughly stated as: can periodic rates yield a higher average production rate than constant rates? We rigorously formulate this question and show via simulations, and rigorous analysis in one simple case, that the answer is no.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Apr 17 19:59:02 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html