Publications about 'diffusion'
Articles in journal or book chapters
  1. A.P. Tran, J.H. Meldon, and E.D. Sontag. Transient diffusion into a bi-layer membrane with mass transfer resistance: Exact solution and time lag analysis. Frontiers in Chemical Engineering, 2:25, 2021. [PDF] Keyword(s): Bi-layer membrane, transient diffusion, heat conduction, mass transfer resistance.
    Exact analytical and closed-form solutions to a problem involving transient diffusion in a bi-layer membrane with external transfer resistance are presented. In addition to the solutions of the transient response, the lead and lag times that are often of importance in the characterization of membranes and arise from the analysis of the asymptotic behavior of the mass permeated through the membrane are also provided. The solutions presented here are also compared to previously derived limiting cases of the diffusion in a bi-layer with an impermeable wall and constant concentrations at the upstream and downstream boundaries. Analysis of the time lag shows that this membrane property is independent of the direction of flow. Finally, an outline is provided of how these solutions, which characterize the response to a step function increase in concentration, can be also used to derive more complex input conditions. Adequately handling boundary layer effects has a wide array of potential applications such as the study of bi-layer undergoing phenomena of heat convection, gas film resistance, and absorption/desorption.

  2. Z. Aminzare and E.D. Sontag. Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs. Nonlinear Analysis, 147:125-144, 2016. [PDF] Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms, synchronization, consensus, reaction-diffusion PDEs, partial differential equations.
    This paper presents a condition which guarantees spatial uniformity for the asymptotic behavior of the solutions of a reaction diffusion partial differential equation (PDE) with Neumann boundary conditions in one dimension, using the Jacobian matrix of the reaction term and the first Dirichlet eigenvalue of the Laplacian operator on the given spatial domain. The estimates are based on logarithmic norms in non-Hilbert spaces, which allow, in particular for a class of examples of interest in biology, tighter estimates than other previously proposed methods.

  3. Z. Aminzare, Y. Shafi, M. Arcak, and E.D. Sontag. Guaranteeing spatial uniformity in reaction-diffusion systems using weighted $L_2$-norm contractions. In V. Kulkarni, G.-B. Stan, and K. Raman, editors, A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pages 73-101. Springer-Verlag, 2014. [PDF] Keyword(s): contractions, contractive systems, Turing instabilities, diffusion, partial differential equations, synchronization.
    This paper gives conditions that guarantee spatial uniformity of the solutions of reaction-diffusion partial differential equations, stated in terms of the Jacobian matrix and Neumann eigenvalues of elliptic operators on the given spatial domain, and similar conditions for diffusively-coupled networks of ordinary differential equations. Also derived are numerical tests making use of linear matrix inequalities that are useful in certifying these conditions.

  4. Z. Aminzare and E.D. Sontag. Logarithmic Lipschitz norms and diffusion-induced instability. Nonlinear Analysis: Theory, Methods & Applications, 83:31-49, 2013. [PDF] Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms, Turing instabilities, diffusion, partial differential equations, synchronization.
    This paper proves that ordinary differential equation systems that are contractive with respect to $L^p$ norms remain so when diffusion is added. Thus, diffusive instabilities, in the sense of the Turing phenomenon, cannot arise for such systems, and in fact any two solutions converge exponentially to each other. The key tools are semi-inner products and logarithmic Lipschitz constants in Banach spaces. An example from biochemistry is discussed, which shows the necessity of considering non-Hilbert spaces. An analogous result for graph-defined interconnections of systems defined by ordinary differential equations is given as well.

  5. M. Miller, M. Hafner, E.D. Sontag, N. Davidsohn, S. Subramanian, P. E. M. Purnick, D. Lauffenburger, and R. Weiss. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity. PLoS Computational Biology, 8:e1002579-, 2012. [PDF] Keyword(s): systems biology, homeostasis, stem cells, synthetic biology.
    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of beta-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and its impact on overall system performance once integrated.

  6. M. Arcak and E.D. Sontag. A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks. Mathematical Biosciences and Engineering, 5:1-19, 2008. Note: Also, preprint: arxiv0705.3188v1 [q-bio], May 2007. [PDF] Keyword(s): MAPK cascades, systems biology, biochemical networks, cyclic feedback systems, secant condition, nonlinear stability, dynamical systems.
    This paper presents a stability test for a class of interconnected nonlinear systems motivated by biochemical reaction networks. One of the main results determines global asymptotic stability of the network from the diagonal stability of a "dissipativity matrix" which incorporates information about the passivity properties of the subsystems, the interconnection structure of the network, and the signs of the interconnection terms. This stability test encompasses the "secant criterion" for cyclic networks presented in our previous paper, and extends it to a general interconnection structure represented by a graph. A second main result allows one to accommodate state products. This extension makes the new stability criterion applicable to a broader class of models, even in the case of cyclic systems. The new stability test is illustrated on a mitogen activated protein kinase (MAPK) cascade model, and on a branched interconnection structure motivated by metabolic networks. Finally, another result addresses the robustness of stability in the presence of diffusion terms in a compartmental system made out of identical systems.

  7. M.R. Jovanovic, M. Arcak, and E.D. Sontag. A passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure. IEEE Transactions on Circuits and Systems, Special Issue on Systems Biology, 55:75-86, 2008. Note: Preprint: also arXiv math.OC/0701622, 22 January 2007.[PDF] Keyword(s): MAPK cascades, systems biology, biochemical networks, nonlinear stability, nonlinear dynamics, diffusion, secant condition, cyclic feedback systems.
    A class of distributed systems with a cyclic interconnection structure is considered. These systems arise in several biochemical applications and they can undergo diffusion driven instability which leads to a formation of spatially heterogeneous patterns. In this paper, a class of cyclic systems in which addition of diffusion does not have a destabilizing effect is identified. For these systems global stability results hold if the "secant" criterion is satisfied. In the linear case, it is shown that the secant condition is necessary and sufficient for the existence of a decoupled quadratic Lyapunov function, which extends a recent diagonal stability result to partial differential equations. For reaction-diffusion equations with nondecreasing coupling nonlinearities global asymptotic stability of the origin is established. All of the derived results remain true for both linear and nonlinear positive diffusion terms. Similar results are shown for compartmental systems.

  8. P. de Leenheer, D. Angeli, and E.D. Sontag. Monotone chemical reaction networks. J. Math Chemistry, 41:295-314, 2007. [PDF] [doi:10.1007/s10910-006-9075-z] Keyword(s): systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    We analyze certain chemical reaction networks and show that every solution converges to some steady state. The reaction kinetics are assumed to be monotone but otherwise arbitrary. When diffusion effects are taken into account, the conclusions remain unchanged. The main tools used in our analysis come from the theory of monotone dynamical systems. We review some of the features of this theory and provide a self-contained proof of a particular attractivity result which is used in proving our main result.

  9. G.A. Enciso, H.L. Smith, and E.D. Sontag. Non-monotone systems decomposable into monotone systems with negative feedback. J. of Differential Equations, 224:205-227, 2006. [PDF] Keyword(s): nonlinear stability, dynamical systems, monotone systems.
    Motivated by the theory of monotone i/o systems, this paper shows that certain finite and infinite dimensional semi-dynamical systems with negative feedback can be decomposed into a monotone open loop system with inputs and a decreasing output function. The original system is reconstituted by plugging the output into the input. By embedding the system into a larger symmetric monotone system, this paper obtains finer information on the asymptotic behavior of solutions, including existence of positively invariant sets and global convergence. An important new result is the extension of the "small gain theorem" of monotone i/o theory to reaction-diffusion partial differential equations: adding diffusion preserves the global attraction of the ODE equilibrium.

Conference articles
  1. Z. Aminzare and E.D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 3835-3847, 2014. [PDF] Keyword(s): contractions, contractive systems, stability, reaction-diffusion PDE's, synchronization, contractive systems, stability.
    Contraction theory provides an elegant way to analyze the behaviors of certain nonlinear dynamical systems. Under sometimes easy to check hypotheses, systems can be shown to have the incremental stability property that trajectories converge to each other. The present paper provides a self-contained introduction to some of the basic concepts and results in contraction theory, discusses applications to synchronization and to reaction-diffusion partial differential equations, and poses several open questions.

  2. Z. Aminzare and E.D. Sontag. Remarks on diffusive-link synchronization using non-Hilbert logarithmic norms. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 6086-6091, 2014. Keyword(s): contractions, contractive systems, stability, reaction-diffusion PDE's, synchronization.
    In this paper, we sketch recent results for synchronization in a network of identical ODE models which are diffusively interconnected. In particular, we provide estimates of convergence of the difference in states between components, in the cases of line, complete, and star graphs, and Cartesian products of such graphs.

  3. Y. Shafi, Z. Aminzare, M. Arcak, and E.D. Sontag. Spatial uniformity in diffusively-coupled systems using weighted L2 norm contractions. In Proc. American Control Conference, pages 5639-5644, 2013. [PDF] Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms, Turing instabilities, diffusion, partial differential equations, synchronization.
    We present conditions that guarantee spatial uniformity in diffusively-coupled systems. Diffusive coupling is a ubiquitous form of local interaction, arising in diverse areas including multiagent coordination and pattern formation in biochemical networks. The conditions we derive make use of the Jacobian matrix and Neumann eigenvalues of elliptic operators, and generalize and unify existing theory about asymptotic convergence of trajectories of reaction-diffusion partial differential equations as well as compartmental ordinary differential equations. We present numerical tests making use of linear matrix inequalities that may be used to certify these conditions. We discuss an example pertaining to electromechanical oscillators. The paper's main contributions are unified verifiable relaxed conditions that guarantee synchrony.

Internal reports
  1. Z. Aminzare and E. D. Sontag. Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations. Technical report, arxiv:1302.2605, 2013. [PDF]
    This note works out an advection-diffusion approximation to the density of a population of E. coli bacteria undergoing chemotaxis in a one-dimensional space. Simulations show the high quality of predictions under a shallow-gradient regime.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Thu Jun 27 23:19:30 2024
Author: sontag.

This document was translated from BibTEX by bibtex2html