Publications by Eduardo D. Sontag in year 2017 |
Articles in journal or book chapters |
This is an expository paper, which compares in detail various alternative weak contraction ideas for nonlinear system stability. |
This paper proposes a technique that combines experimental data, mathematical modeling, and statistical analyses for identifying optimal treatment protocols that are robust with respect to individual variability. Experimental data from a small sample population is amplified using bootstrapping to obtain a large number of virtual populations that statistically match the expected heterogeneity. Alternative therapies chosen from among a set of clinically-realizable protocols are then compared and scored according to coverage. As proof of concept, the method is used to evaluate a treatment with oncolytic viruses and dendritic cell vaccines in a mouse model of melanoma. The analysis shows that while every scheduling variant of an experimentally-utilized treatment protocol is fragile (non-robust), there is an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists. |
Biochemical reaction networks in cells frequently consist of reactions with disparate timescales. Stochastic simulations of such multiscale BRNs are prohibitively slow due to the high computational cost incurred in the simulations of fast reactions. One way to resolve this problem is to replace fast species by their stationary conditional expectation values conditioned on slow species. While various approximations schemes for this quasi-steady state approximation have been developed, they often lead to considerable errors. This paper considers two classes of multiscale BRNs which can be reduced by through an exact QSS rather than approximations. Specifically, we assume that fast species constitute either a feedforward network or a complex balanced network. Exact reductions for various examples are derived, and the computational advantages of this approach are illustrated through simulations. |
This paper introduces two generalizations of systems invariant with respect to continuous sets of input transformations, that is, systems whose output dynamics remain invariant when applying a transformation to the input and simultaneously adjusting the initial conditions. These generalizations concern systems invariant with respect to time-dependent input transformations with exponentially increasing or decreasing ``strength'', and systems invariant with respect to transformations of the "nonlinear derivatives" of the input. Interestingly, these two generalizations of invariant systems encompass linear time-invariant (LTI) systems with real transfer function zeros of arbitrary multiplicity. Furthermore, the zero-dynamics of systems possessing our generalized invariances show properties analogous to those of LTI systems with transfer function zeros, generalizing concepts like pole-zero cancellation, the rejection of ramps by Hurwitz LTI systems with a zero at the origin with multiplicity two, and (to a certain extend) the superposition principle with respect to inputs zeroing the output. |
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60nM-1mM), we resolved B. subtilis' ``oxygen preference conundrum'' by demonstrating consistent migration towards maximum oxygen concentrations. Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131nM-196mM). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a log-sensing strategy that affords organisms high sensitivity over a wide range of conditions. |
Utilizing the synthetic transcription-translation (TX-TL) system, this paper studies the impact of nucleotide triphosphates (NTPs) and magnesium (Mg2+), on gene expression, in the context of the counterintuitive phenomenon of suppression of gene expression at high NTP concentration. Measuring translation rates for different Mg2+ and NTP concentrations, we observe a complex resource dependence. We demonstrate that translation is the rate-limiting process that is directly inhibited by high NTP concentrations. Additional Mg2+ can partially reverse this inhibition. In several experiments, we observe two maxima of the translation rate viewed as a function of both Mg2+ and NTP concentration, which can be explained in terms of an NTP-independent effect on the ribosome complex and an NTP- Mg2+ titration effect. The non-trivial compensatory effects of abundance of different vital resources signals the presence of complex regulatory mechanisms to achieve optimal gene expression. |
Elucidating the structure of biological intracellular networks from experimental data remains a major challenge. This paper studies two types of ``response signatures'' to identify specific circuit motifs, from the observed response to periodic inputs. In particular, the objective is to distinguish negative feedback loops (NFLs) from incoherent feedforward loops (IFFLs), which are two types of circuits capable of producing exact adaptation. The theory of monotone systems with inputs is used to show that ``period skipping'' (non-harmonic responses) is ruled out in IFFL's, and a notion called ``refractory period stabilization'' is also analyzed. The approach is then applied to identify a circuit dominating cell cycle timing in yeast, and to uncover a calcium-mediated NFL circuit in \emph{C.elegans} olfactory sensory neurons. |
This paper analizes a model for the initial stage of T cell activation. The state variables in the model are the concentrations of phosphorylation states of the T cell receptor complex and the phosphatase SHP-1 in the cell. It is shown that these quantities cannot approach zero, and that there is more than one positive steady state for certain values of the parameters; in addition, damped oscillations are possible. It is also shown that the chemical concentration which represents the degree of activation of the cell, represented by the maximally phosphorylated form of the T cell receptor complex, is in general a non-monotone function of the activating signal. In particular there are cases where there is a value of the dissociation constant of the ligand from the receptor which produces an optimal activation of the T cell. In this way the results of certain simulations in the literature have been confirmed rigorously and new features are discovered. |
This paper describes a novel approach for characterization of chemosensitivity and prediction of clinical response in multiple myeloma. It relies upon a patient-specific computational model of clinical response, parameterized by a high-throughput ex vivo assay that quantifies sensitivity of primary MM cells to 31 agents or combinations, in a reconstruction of the tumor microenvironment. The mathematical model, which inherently accounts for intra-tumoral heterogeneity of drug sensitivity, combined with drug- and regimen-specific pharmacokinetics, produces patient-specific predictions of clinical response 5 days post-biopsy. |
Since the early 1990s, many authors have independently suggested that self/nonself recognition by the immune system might be modulated by the rates of change of antigen challenges. This paper introduces an extremely simple and purely conceptual mathematical model that allows dynamic discrimination of immune challenges. The main component of the model is a motif which is ubiquitous in systems biology, the incoherent feedforward loop, which endows the system with the capability to estimate exponential growth exponents, a prediction which is consistent with experimental work showing that exponentially increasing antigen stimulation is a determinant of immune reactivity. Combined with a bistable system and a simple feedback repression mechanism, an interesting phenomenon emerges as a tumor growth rate increases: elimination, tolerance (tumor growth), again elimination, and finally a second zone of tolerance (tumor escape). This prediction from our model is analogous to the ``two-zone tumor tolerance'' phenomenon experimentally validated since the mid 1970s. Moreover, we provide a plausible biological instantiation of our circuit using combinations of regulatory and effector T cells. |
A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al.\ went on to provide a sufficient condition to test whether a given system has the DC property. Here, we show how DC is a reformulation of a well-known concept in systems biology, statistics, and control theory -- that of parameter structural non-identifiability. Viewing DC as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for DC. We obtain as a special case the sufficient criterion discussed by Karin et al. We also draw connections to system equivalence and to the fold-change detection property. |
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. This paper presents perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop `Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. |
This paper reports on the construction of a phosphorylation- and optically-responsive supramolecular complex of metabolic pathway enzymes for the biodegradation of an environmental pollutant. Fusing of enzymes led to an increase in pathway efficiency, and illustrates the possibility of spatio-temporal control over formation and functioning of a wide variety of synthetic biotransformations. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html