BACK TO INDEX

Publications about 'algorithms'
Articles in journal or book chapters
  1. A.C.B. de Oliveira, M. Siami, and E. D. Sontag. Regularising numerical extremals along singular arcs: a Lie-theoretic approach. In M.A. Belabbas, editor, Geometry and Topology in Control, Proceedings of BIRS Workshop. American Institute of Mathematical Sciences Press, 2025. Note: To appear.[PDF] Keyword(s): optimal control, nonlinear control, Lie algebras, robotics.
    Abstract:
    Numerical ``direct'' approaches to time-optimal control often fail to find solutions that are singular in the sense of the Pontryagin Maximum Principle. These approaches behave better when searching for saturated (bang-bang) solutions. In previous work by one of the authors, singular solutions were theoretically shown to exist for the time-optimal problem for two-link manipulators under hard torque constraints. The theoretical results gave explicit formulas, based on Lie theory, for singular segments of trajectories, but the global structure of solutions remains unknown. In this work, we show how to effectively combine these theoretically found formulas with the use of general-purpose optimal control softwares. By using the explicit formula given by theory in the intervals where the numerical solution enters a singular arcs, we not only obtain an algebraic expression for the control in that interval, but we are also able to remove artifacts present in the numerical solution. In this way, the best features of numerical algorithms and theory complement each other and provide a better picture of the global optimal structure. We showcase the technique on a 2 degrees of freedom robotic arm example, and also propose a way of extending the analyzed method to robotic arms with higher degrees of freedom through partial feedback linearization, assuming the desired task can be mostly performed by a few of the degrees of freedom of the robot and imposing some prespecified trajectory on the remaining joints.


  2. L. Cui, Z.P. Jiang, E.D. Sontag, and R.D. Braatz. Perturbed gradient descent algorithms are small-disturbance input-to-state stable. Automatica, 2025. Note: Submitted. Also arXiv:2507.02131. [PDF] [doi:https://doi.org/10.48550/arXiv.2507.02131] Keyword(s): Input-to-state stability (ISS), gradient systems, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, policy optimization, linear quadratic regulator (LQR).
    Abstract:
    This article investigates the robustness of gradient descent algorithms under perturbations. The concept of small-disturbance input-to-state stability (ISS) for discrete-time nonlinear dynamical systems is introduced, along with its Lyapunov characterization. The conventional linear \emph{Polyak-\L{}ojasiewicz} (PL) condition is then extended to a nonlinear version, and it is shown that the gradient descent algorithm is small-disturbance ISS provided the objective function satisfies the generalized nonlinear PL condition. This small-disturbance ISS property guarantees that the gradient descent algorithm converges to a small neighborhood of the optimum under sufficiently small perturbations. As a direct application of the developed framework, we demonstrate that the LQR cost satisfies the generalized nonlinear PL condition, thereby establishing that the policy gradient algorithm for LQR is small-disturbance ISS. Additionally, other popular policy gradient algorithms, including natural policy gradient and Gauss-Newton method, are also proven to be small-disturbance ISS.


  3. E.D. Sontag. Some remarks on gradient dominance and LQR policy optimization. arXiv 2507.10452, 2025. [PDF] [doi:https://doi.org/10.48550/arXiv.2507.10452] Keyword(s): gradient dominance, gradient flows, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, LQR, reinforcement learning, machine learning, artificial intelligence, optimal control.
    Abstract:
    Solutions of optimization problems, including policy optimization in reinforcement learning, typically rely upon some variant of gradient descent. There has been much recent work in the machine learning, control, and optimization communities applying the Polyak-Ċojasiewicz Inequality (PLI) to such problems in order to establish an exponential rate of convergence (a.k.a. ``linear convergence'' in the local-iteration language of numerical analysis) of loss functions to their minima under the gradient flow. Often, as is the case of policy iteration for the continuous-time LQR problem, this rate vanishes for large initial conditions, resulting in a mixed globally linear / locally exponential behavior. This is in sharp contrast with the discrete-time LQR problem, where there is global exponential convergence. That gap between CT and DT behaviors motivates the search for various generalized PLI-like conditions, and this paper addresses that topic. Moreover, these generalizations are key to understanding the transient and asymptotic effects of errors in the estimation of the gradient, errors which might arise from adversarial attacks, wrong evaluation by an oracle, early stopping of a simulation, inaccurate and very approximate digital twins, stochastic computations (algorithm ``reproducibility''), or learning by sampling from limited data. We describe an ``input to state stability'' (ISS) analysis of this issue. We also discuss convergence and PLI-like properties of ``linear feedforward neural networks'' in feedback control. Much of the work described here was done in collaboration with Arthur Castello B. de Oliveira, Leilei Cui, Zhong-Ping Jiang, and Milad Siami. This is a short paper summarizing the slides presented at my keynote at the 2025 L4DC (Learning for Dynamics \& Control Conference) in Ann Arbor, Michigan, 05 June 2025. A partial bibliography has been added.


  4. A.C.B de Oliveira, D.D. Jatkar, and E.D. Sontag. On the convergence of overparameterized problems: Inherent properties of the compositional structure of neural networks. 2025. Note: Submitted. Also arXiv:2511.09810 [cs.LG]. [WWW] Keyword(s): neural networks, optimization, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, gradient methods, overparameterization.
    Abstract:
    This paper investigates how the compositional structure of neural networks shapes their optimization landscape and training dynamics. We analyze the gradient flow associated with overparameterized optimization problems, which can be interpreted as training a neural network with linear activations. Remarkably, we show that the global convergence properties can be derived for any cost function that is proper and real analytic. We then specialize the analysis to scalar-valued cost functions, where the geometry of the landscape can be fully characterized. In this setting, we demonstrate that key structural features -- such as the location and stability of saddle points -- are universal across all admissible costs, depending solely on the overparameterized representation rather than on problem-specific details. Moreover, we show that convergence can be arbitrarily accelerated depending on the initialization, as measured by an imbalance metric introduced in this work. Finally, we discuss how these insights may generalize to neural networks with sigmoidal activations, showing through a simple example which geometric and dynamical properties persist beyond the linear case.


  5. A.C.B de Oliveira, M. Siami, and E.D. Sontag. Convergence analysis of overparametrized LQR formulations. Automatica, 182:112504, 2025. Note: Version with more details in arXiv 2408.15456. [PDF] Keyword(s): machine learning, artificial intelligence, learning theory, singularities in optimization, gradient systems, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, overparametrization, neural networks, overparametrization, gradient descent, input to state stability, feedback control, LQR.
    Abstract:
    Motivated by the growing use of Artificial Intelligence (AI) tools in control design, this paper takes the first steps towards bridging the gap between results from Direct Gradient methods for the Linear Quadratic Regulator (LQR), and neural networks. More specifically, it looks into the case where one wants to find a Linear Feed-Forward Neural Network (LFFNN) feedback that minimizes a LQR cost. This paper starts by computing the gradient formulas for the parameters of each layer, which are used to derive a key conservation law of the system. This conservation law is then leveraged to prove boundedness and global convergence of solutions to critical points, and invariance of the set of stabilizing networks under the training dynamics. This is followed by an analysis of the case where the LFFNN has a single hidden layer. For this case, the paper proves that the training converges not only to critical points but to the optimal feedback control law for all but a set of measure-zero of the initializations. These theoretical results are followed by an extensive analysis of a simple version of the problem (the ``vector case''), proving the theoretical properties of accelerated convergence and robustness for this simpler example. Finally, the paper presents numerical evidence of faster convergence of the training of general LFFNNs when compared to traditional direct gradient methods, showing that the acceleration of the solution is observable even when the gradient is not explicitly computed but estimated from evaluations of the cost function.


  6. L. Cui, Z.P. Jiang, and E. D. Sontag. Small-disturbance input-to-state stability of perturbed gradient flows: Applications to LQR problem. Systems and Control Letters, 188:105804, 2024. [PDF] [doi:https://doi.org/10.1016/j.sysconle.2024.105804] Keyword(s): machine learning, artificial intelligence, gradient systems, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, direct optimization, input-to-state stability, ISS.
    Abstract:
    This paper studies the effect of perturbations on the gradient flow of a general constrained nonlinear programming problem, where the perturbation may arise from inaccurate gradient estimation in the setting of data-driven optimization. Under suitable conditions on the objective function, the perturbed gradient flow is shown to be small-disturbance input-to-state stable (ISS), which implies that, in the presence of a small-enough perturbation, the trajectory of the perturbed gradient flow must eventually enter a small neighborhood of the optimum. This work was motivated by the question of robustness of direct methods for the linear quadratic regulator problem, and specifically the analysis of the effect of perturbations caused by gradient estimation or round-off errors in policy optimization. Interestingly, we show small-disturbance ISS for three of the most common optimization algorithms: standard gradient flow, natural gradient flow, and Newton gradient flow.


  7. S. Wang, E.D. Sontag, and D.A. Lauffenburger. What cannot be seen correctly in 2D visualizations of single-cell `omics data?. Cell Systems, 14:723-731, 2023. [WWW] [PDF] Keyword(s): visualization, single-cell data, tSNE, UMAP.
    Abstract:
    Single-cell -omics datasets are high-dimensional and difficult to visualize. A common strategy for exploring such data is to create and analyze 2D projections. Such projections may be highly nonlinear, and implementation algorithms are designed with the goal of preserving aspects of the original high-dimensional shape of data such as neighborhood relationships or metrics. However, important aspects of high-dimensional geometry are known from mathematical theory to have no equivalent representation in 2D, or are subject to large distortions, and will therefore be misrepresented or even invisible in any possible 2D representation. We show that features such as quantitative distances, relative positioning, and qualitative neighborhoods of high-dimensional data points will always be misrepresented in 2D projections. Our results rely upon concepts from differential geometry, combinatorial geometry, and algebraic topology. As an illustrative example, we show that even a simple single-cell RNA sequencing dataset will always be distorted, no matter what 2D projection is employed. We also discuss how certain recently developed computational tools can help describe the high-dimensional geometric features that will be necessarily missing from any possible 2D projections.


  8. D. Angeli, M.A. Al-Radhawi, and E.D. Sontag. A robust Lyapunov criterion for non-oscillatory behaviors in biological interaction networks. IEEE Transactions on Automatic Control, 67(7):3305-3320, 2022. [PDF] [doi:10.1109/TAC.2021.3096807] Keyword(s): oscillations, dynamical systems, enzymatic cycles, systems biology.
    Abstract:
    This paper introduces a notion of non-oscillation, proposes a constructive method for its robust verification, and studies its application to biological interaction networks. The paper starts by revisiting Muldowney's result on non-existence of periodic solutions based on the study of the variational system of the second additive compound of the Jacobian of a nonlinear system. It then shows that exponential stability of the latter rules out limit cycles, quasi-periodic solutions, and broad classes of oscillatory behavior. The focus then turns ton nonlinear equations arising in biological interaction networks with general kinetics, the paper shows that the dynamics of the variational system can be embedded in a linear differential inclusion. This leads to algorithms for constructing piecewise linear Lyapunov functions to certify global robust non-oscillatory behavior. Finally, the paper applies the new techniques to study several regulated enzymatic cycles where available methods are not able to provide any information about their qualitative global behavior.


  9. E.D. Sontag. Remarks on input to state stability of perturbed gradient flows, motivated by model-free feedback control learning. Systems and Control Letters, 161:105138, 2022. Note: Important: there is an error in the paper. For the LQR application, the paper only shows iISS, not ISS. See the paper Small-disturbance input-to-state stability of perturbed gradient flows: Applications to LQR problem for details.[PDF] Keyword(s): iss, input to state stability, data-driven control, gradient systems, steepest descent, model-free control, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms.
    Abstract:
    Recent work on data-driven control and reinforcement learning has renewed interest in a relatively old field in control theory: model-free optimal control approaches which work directly with a cost function and do not rely upon perfect knowledge of a system model. Instead, an "oracle" returns an estimate of the cost associated to, for example, a proposed linear feedback law to solve a linear-quadratic regulator problem. This estimate, and an estimate of the gradient of the cost, might be obtained by performing experiments on the physical system being controlled. This motivates in turn the analysis of steepest descent algorithms and their associated gradient differential equations. This paper studies the effect of errors in the estimation of the gradient, framed in the language of input to state stability, where the input represents a perturbation from the true gradient. Since one needs to study systems evolving on proper open subsets of Euclidean space, a self-contained review of input to state stability definitions and theorems for systems that evolve on such sets is included. The results are then applied to the study of noisy gradient systems, as well as the associated steepest descent algorithms.


  10. T. Kang, J.T. White, Z. Xie, Y. Benenson, E.D. Sontag, and L. Bleris. Reverse engineering validation using a benchmark synthetic gene circuit in human cells. ACS Synthetic Biology, 2:255-262, 2013. [PDF] Keyword(s): reverse engineering, systems biology, synthetic biology.
    Abstract:
    This work introduces an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.


  11. R. Albert, B. Dasgupta, and E.D. Sontag. Inference of signal transduction networks from double causal evidence. In David Fenyö, editor, Computational Biology, Methods in Molecular Biology vol. 673, pages 239-251. Springer, 2010. [PDF] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    We present a novel computational method, and related software, to synthesize signal transduction networks from single and double causal evidence.


  12. E.D. Sontag and D. Zeilberger. A symbolic computation approach to a problem involving multivariate Poisson distributions. Advances in Applied Mathematics, 44:359-377, 2010. Note: There are typos in the published version. Please see this file for corrections: https://drive.google.com/file/d/0BzWFHczJF2INUlEtVkFJOUJiUFU/view. [PDF] Keyword(s): probability theory, stochastic systems, systems biology, reaction networks, chemical master equation.
    Abstract:
    Multivariate Poisson random variables subject to linear integer constraints arise in several application areas, such as queuing and biomolecular networks. This note shows how to compute conditional statistics in this context, by employing WZ Theory and associated algorithms. A symbolic computation package has been developed and is made freely available. A discussion of motivating biomolecular problems is also provided.


  13. R. Albert, B. Dasgupta, R. Dondi, and E.D. Sontag. Inferring (biological) signal transduction networks via transitive reductions of directed graphs. Algorithmica, 51:129-159, 2008. [PDF] [doi:10.1007/s00453-007-9055-0] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    The transitive reduction problem is that of inferring a sparsest possible biological signal transduction network consistent with a set of experimental observations, with a goal to minimize false positive inferences even if risking false negatives. This paper provides computational complexity results as well as approximation algorithms with guaranteed performance.


  14. S. Kachalo, R. Zhang, E.D. Sontag, R. Albert, and B. Dasgupta. NET-SYNTHESIS: A software for synthesis, inference and simplification of signal transduction networks. Bioinformatics, 24:293 - 295, 2008. [PDF] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    This paper presents a software tool for inference and simplification of signal transduction networks. The method relies on the representation of observed indirect causal relationships as network paths, using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. We illustrate the biological usability of our software by applying it to a previously published signal transduction network and by using it to synthesize and simplify a novel network corresponding to activation-induced cell death in large granular lymphocyte leukemia.


  15. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E.D. Sontag, A. Zelikovsky, and K. Westbrooks. A novel method for signal transduction network inference from indirect experimental evidence. In R. Giancarlo and S. Hannenhalli, editors, 7th Workshop on Algorithms in Bioinformatics (WABI), volume 14, pages 407-419. Springer-Verlag, Berlin, 2007. Note: Conference version of journal paper with same title. Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.


  16. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E.D. Sontag, A. Zelikovsky, and K. Westbrooks. A novel method for signal transduction network inference from indirect experimental evidence. Journal of Computational Biology, 14:927-949, 2007. [PDF] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    This paper introduces a new method of combined synthesis and inference of biological signal transduction networks. The main idea lies in representing observed causal relationships as network paths, and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. The paper formalizes the approach, studies its computational complexity, proves new results for exact and approximate solutions of the computationally hard transitive reduction substep of the approach, validates the biological applicability by applying it to a previously published signal transduction network by Li et al., and shows that the algorithm for the transitive reduction substep performs well on graphs with a structure similar to those observed in transcriptional regulatory and signal transduction networks.


  17. P. Berman, B. Dasgupta, and E.D. Sontag. Algorithmic issues in reverse engineering of protein and gene networks via the modular response analysis method. Annals of the NY Academy of Sciences, 1115:132-141, 2007. [PDF] Keyword(s): systems biology, reaction networks, gene and protein networks, reverse engineering, systems identification, graph algorithms.
    Abstract:
    This paper studies a computational problem motivated by the modular response analysis method for reverse engineering of protein and gene networks. This set-cover problem is hard to solve exactly for large networks, but efficient approximation algorithms are given and their complexity is analyzed.


  18. P. Berman, B. Dasgupta, and E.D. Sontag. Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks. Discrete Applied Mathematics Special Series on Computational Molecular Biology, 155:733-749, 2007. [PDF] Keyword(s): systems biology, reaction networks, gene and protein networks, systems identification, reverse engineering.
    Abstract:
    This paper investigates computational complexity aspects of a combinatorial problem that arises in the reverse engineering of protein and gene networks, showing relations to an appropriate set multicover problem with large "coverage" factor, and providing a non-trivial analysis of a simple randomized polynomial-time approximation algorithm for the problem.


  19. B. DasGupta, G.A. Enciso, E.D. Sontag, and Y. Zhang. Algorithmic and complexity aspects of decompositions of biological networks into monotone subsystems. BioSystems, 90:161-178, 2007. [PDF] Keyword(s): monotone systems, systems biology, reaction networks.
    Abstract:
    A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model.


  20. B. DasGupta, J.P. Hespanha, J. Riehl, and E.D. Sontag. Honey-pot constrained searching with local sensory information. Nonlinear Analysis, 65:1773-1793, 2006. [PDF] Keyword(s): search problems, algorithms, computational complexity.
    Abstract:
    This paper investigates the problem of searching for a hidden target in a bounded region of the plane by an autonomous robot which is only able to use limited local sensory information. It proposes an aggregation-based approach to solve this problem, in which the continuous search space is partitioned into a finite collection of regions on which we define a discrete search problem and a solution to the original problem is obtained through a refinement procedure that lifts the discrete path into a continuous one. The resulting solution is in general not optimal but one can construct bounds to gauge the cost penalty incurred. The discrete version is formalized and an optimization problem is stated as a `reward-collecting' bounded-length path problem. NP-completeness and efficient approximation algorithms for various cases of this problem are discussed.


  21. E.D. Sontag. A general approach to path planning for systems without drift. In J. Baillieul, S. S. Sastry, and H.J. Sussmann, editors, Essays on mathematical robotics (Minneapolis, MN, 1993), volume 104 of IMA Vol. Math. Appl., pages 151-168. Springer, New York, 1998. [PDF] Keyword(s): path-planning, systems without drift, nonlinear control, controllability, real-analytic functions, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms.
    Abstract:
    This paper proposes a generally applicable technique for the control of analytic systems with no drift. The method is based on the generation of "nonsingular loops" that allow linearized controllability. One can then implement Newton and/or gradient searches in the search for a control. A general convergence theorem is proved.


  22. E.D. Sontag. Critical points for least-squares problems involving certain analytic functions, with applications to sigmoidal nets. Adv. Comput. Math., 5(2-3):245-268, 1996. [PDF] Keyword(s): machine learning, artificial intelligence, subanalytic sets, semianalytic sets, critical points, approximation theory, neural networks, real-analytic functions, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms.
    Abstract:
    This paper deals with nonlinear least-squares problems involving the fitting to data of parameterized analytic functions. For generic regression data, a general result establishes the countability, and under stronger assumptions finiteness, of the set of functions giving rise to critical points of the quadratic loss function. In the special case of what are usually called "single-hidden layer neural networks", which are built upon the standard sigmoidal activation tanh(x) or equivalently 1/(1+exp(-x)), a rough upper bound for this cardinality is provided as well.


  23. E.D. Sontag and H.J. Sussmann. Back propagation separates where perceptrons do. Neural Networks, 4(2):243-249, 1991. [PDF] [doi:http://dx.doi.org/10.1016/0893-6080(91)90008-S] Keyword(s): machine learning, artificial intelligence, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, neural networks.
    Abstract:
    Feedforward nets with sigmoidal activation functions are often designed by minimizing a cost criterion. It has been pointed out before that this technique may be outperformed by the classical perceptron learning rule, at least on some problems. In this paper, we show that no such pathologies can arise if the error criterion is of a threshold LMS type, i.e., is zero for values ``beyond'' the desired target values. More precisely, we show that if the data are linearly separable, and one considers nets with no hidden neurons, then an error function as above cannot have any local minima that are not global. In addition, the proof gives the following stronger result, under the stated hypotheses: the continuous gradient adjustment procedure is such that from any initial weight configuration a separating set of weights is obtained in finite time. This is a precise analogue of the Perceptron Learning Theorem. The results are then compared with the more classical pattern recognition problem of threshold LMS with linear activations, where no spurious local minima exist even for nonseparable data: here it is shown that even if using the threshold criterion, such bad local minima may occur, if the data are not separable and sigmoids are used. keywords = { neural networks , feedforward neural nets },


  24. E.D. Sontag. Realization theory of discrete-time nonlinear systems. I. The bounded case. IEEE Trans. Circuits and Systems, 26(5):342-356, 1979. [PDF] Keyword(s): discrete-time systems, nonlinear systems, realization theory, bilinear systems, state-affine systems.
    Abstract:
    A state-space realization theory is presented for a wide class of discrete time input/output behaviors. Although In many ways restricted, this class does include as particular cases those treated in the literature (linear, multilinear, internally bilinear, homogeneous), as well as certain nonanalytic nonlinearities. The theory is conceptually simple, and matrix-theoretic algorithms are straightforward. Finite-realizability of these behaviors by state-affine systems is shown to be equivalent both to the existence of high-order input/output equations and to realizability by more general types of systems.


Conference articles
  1. L. Cui, Z.P. Jiang, and E. D. Sontag. Small-covariance noise-to-state stability of stochastic systems and its applications to stochastic gradient dynamics. In 2026 American Control Conference (ACC), 2025. Note: Submitted. Also arXiv:2509.24277. [PDF] [doi:https://doi.org/10.48550/arXiv.2509.24277] Keyword(s): noise to state stability, input to state stability, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, stochastic systems.
    Abstract:
    This paper studies gradient dynamics subject to additive stochastic noise, which may arise from sources such as stochastic gradient estimation, measurement noise, or stochastic sampling errors. To analyze the robustness of such stochastic gradient systems, the concept of small-covariance noise-to-state stability (NSS) is introduced, along with a Lyapunov-based characterization. Furthermore, the classical Polyak–Lojasiewicz (PL) condition on the objective function is generalized to the $\mathcal{K}$-PL condition via comparison functions, thereby extending its applicability to a broader class of optimization problems. It is shown that the stochastic gradient dynamics exhibit small-covariance NSS if the objective function satisfies the $\mathcal{K}$-PL condition and possesses a globally Lipschitz continuous gradient. This result implies that the trajectories of stochastic gradient dynamics converge to a neighborhood of the optimum with high probability, with the size of the neighborhood determined by the noise covariance. Moreover, if the $\mathcal{K}$-PL condition is strengthened to a $\mathcal{K}_\infty$-PL condition, the dynamics are NSS; whereas if it is weakened to a general positive-definite-PL condition, the dynamics exhibit integral NSS. The results further extend to objectives without globally Lipschitz gradients through appropriate step-size tuning. The proposed framework is further applied to the robustness analysis of policy optimization for the linear quadratic regulator (LQR) and logistic regression.


  2. M.K. Wafi, A.C.B de Oliveira, and E.D. Sontag. On the (almost) global exponential convergence of overparameterized policy optimization for the LQR problem. In 2026 American Control Conference (ACC), 2025. Note: Submitted. Also arXiv:2510.02140. [PDF] Keyword(s): machine learning, artificial intelligence, gradient dominance, gradient flows, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, LQR, reinforcement learning.
    Abstract:
    In this work we study the convergence of gradient methods for nonconvex optimization problems -- specifically the effect of the problem formulation to the convergence behavior of the solution of a gradient flow. We show through a simple example that, surprisingly, the gradient flow solution can be exponentially or asymptotically convergent, depending on how the problem is formulated. We then deepen the analysis and show that a policy optimization strategy for the continuous-time linear quadratic regulator (LQR) (which is known to present only asymptotic convergence globally) presents almost global exponential convergence if the problem is overparameterized through a linear feed-forward neural network (LFFNN). We prove this qualitative improvement always happens for a simplified version of the LQR problem and derive explicit convergence rates for the gradient flow. Finally, we show that both the qualitative improvement and the quantitative rate gains persist in the general LQR through numerical simulations.


  3. A.C.B de Oliveira, L. Cui, and E. D. Sontag. Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems. In Proc. 64th IEEE Conference on Decision and Control (CDC), 2025. Note: To appear. Extended version in arXiv:2503.23641. [PDF] [doi:https://doi.org/10.48550/arXiv.2503.23641] Keyword(s): machine learning, artificial intelligence, gradient dominance, gradient flows, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, LQR, reinforcement learning.
    Abstract:
    This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.


  4. A.C.B de Oliveira, M. Siami, and E.D. Sontag. Remarks on the gradient training of linear neural network based feedback for the LQR Problem. In Proc. 2024 63rd IEEE Conference on Decision and Control (CDC), pages 7846-7852, 2024. [PDF] Keyword(s): machine learning, artificial intelligence, neural networks, overparametrization, gradient descent, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, input to state stability, gradient systems, feedback control, LQR.
    Abstract:
    Motivated by the current interest in using Artificial intelligence (AI) tools in control design, this paper takes the first steps towards bridging results from gradient methods for solving the LQR control problem, and neural networks. More specifically, it looks into the case where one wants to find a Linear Feed-Forward Neural Network (LFFNN) that minimizes the Linear Quadratic Regulator (LQR) cost. This work develops gradient formulas that can be used to implement the training of LFFNNs to solve the LQR problem, and derives an important conservation law of the system. This conservation law is then leveraged to prove global convergence of solutions and invariance of the set of stabilizing networks under the training dynamics. These theoretical results are then followed by and extensive analysis of the simplest version of the problem (the ``scalar case'') and by numerical evidence of faster convergence of the training of general LFFNNs when compared to traditional direct gradient methods. These results not only serve as indication of the theoretical value of studying such a problem, but also of the practical value of LFFNNs as design tools for data-driven control applications.


  5. A.C.B de Oliveira, M. Siami, and E.D. Sontag. Dynamics and perturbations of overparameterized linear neural networks. In Proc. 2023 62st IEEE Conference on Decision and Control (CDC), pages 7356-7361, 2023. Note: Extended version is On the ISS property of the gradient flow for single hidden-layer neural networks with linear activations, arXiv https://arxiv.org/abs/2305.09904. [PDF] [doi:10.1109/CDC49753.2023.10383478] Keyword(s): neural networks, overparametrization, gradient descent, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms, input to state stability, gradient systems.
    Abstract:
    Recent research in neural networks and machine learning suggests that using many more parameters than strictly required by the initial complexity of a regression problem can result in more accurate or faster-converging models -- contrary to classical statistical belief. This phenomenon, sometimes known as ``benign overfitting'', raises questions regarding in what other ways might overparameterization affect the properties of a learning problem. In this work, we investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation. This uncertainty arises naturally if the gradient is estimated from noisy data or directly measured. Our object of study is a linear neural network with a single, arbitrarily wide, hidden layer and an arbitrary number of inputs and outputs. In this paper we solve the problem for the case where the input and output of our neural-network are one-dimensional, deriving sufficient conditions for robustness of our system based on necessary and sufficient conditions for convergence in the undisturbed case. We then show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized, and discuss directions of future work that might extend our current results for more general formulations.


  6. M. Sznaier, A. Olshevsky, and E.D. Sontag. The role of systems theory in control oriented learning. In Proc. 25th Int. Symp. Mathematical Theory of Networks and Systems (MTNS 2022), 2022. Note: Looks like only the abstract was published!. [PDF] Keyword(s): control oriented learning, neural networks, reinforcement learning, feedback control, machine learning.
    Abstract:
    Systems theory can play an important in unveiling fundamental limitations of learning algorithms and architectures when used to control a dynamical system, and in suggesting strategies for overcoming these limitations. As an example, a feedforward neural network cannot stabilize a double integrator using output feedback. Similarly, a recurrent NN with differentiable activation functions that stabilizes a non-strongly stabilizable system must be itself open loop unstable, a fact that has profound implications for training with noisy, finite data. A potential solution to this problem, motivated by results on stabilization with periodic control, is the use of neural nets with periodic resets, showing that indeed systems theoretic analysis is instrumental in developing architectures capable of controlling certain classes of unstable systems. This short conference paper also argues that when the goal is to learn control oriented models, the loss function should reflect closed loop, rather than open loop model performance, a fact that can be accomplished by using gap-metric motivated loss functions.


  7. B. DasGupta, J.P. Hespanha, and E.D. Sontag. Computational complexities of honey-pot searching with local sensory information. In Proceedings American Control Conf., Boston, June 2004, CD-ROM, ThA06.1, IEEE Publications, Piscataway, 2004. [PDF]
    Abstract:
    In this paper we investigate the problem of searching for a hidden target in a bounded region of the plane, by an autonomous robot which is only able to use limited local sensory information. We formalize a discrete version of the problem as a "reward-collecting" path problem and provide efficient approximation algorithms for various cases.


  8. E.D. Sontag. Gradient techniques for systems with no drift: A classical idea revisited. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 2706-2711, 1993. [PDF] Keyword(s): path-planning, systems without drift, nonlinear control, controllability, real-analytic functions, gradient dynamics, gradient descent, gradient systems, gradient descent, numerical methods, dynamics of algorithms.
    Abstract:
    This paper proposes a technique for the control of analytic systems with no drift. It is based on the generation of "nonsingular loops" which allow linearized controllability. Once such loops are available, it is possible to employ standard Newton or steepest descent methods. The theoretical justification of the approach relies on results on genericity of nonsingular controls as well as a simple convergence lemma.


Internal reports
  1. E.D. Sontag and H.J. Sussmann. Optimization algorithms for image restoration and segmentation. Technical report 34, Rutgers Center for Computer Aids for Industrial Productivity, 1987.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Sun Jan 4 22:55:38 2026
Author: sontag.


This document was translated from BibTEX by bibtex2html