Publications about 'internal model principle' |
Articles in journal or book chapters |
Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions. |
This paper introduces two generalizations of systems invariant with respect to continuous sets of input transformations, that is, systems whose output dynamics remain invariant when applying a transformation to the input and simultaneously adjusting the initial conditions. These generalizations concern systems invariant with respect to time-dependent input transformations with exponentially increasing or decreasing ``strength'', and systems invariant with respect to transformations of the "nonlinear derivatives" of the input. Interestingly, these two generalizations of invariant systems encompass linear time-invariant (LTI) systems with real transfer function zeros of arbitrary multiplicity. Furthermore, the zero-dynamics of systems possessing our generalized invariances show properties analogous to those of LTI systems with transfer function zeros, generalizing concepts like pole-zero cancellation, the rejection of ramps by Hurwitz LTI systems with a zero at the origin with multiplicity two, and (to a certain extend) the superposition principle with respect to inputs zeroing the output. |
Since the early 1990s, many authors have independently suggested that self/nonself recognition by the immune system might be modulated by the rates of change of antigen challenges. This paper introduces an extremely simple and purely conceptual mathematical model that allows dynamic discrimination of immune challenges. The main component of the model is a motif which is ubiquitous in systems biology, the incoherent feedforward loop, which endows the system with the capability to estimate exponential growth exponents, a prediction which is consistent with experimental work showing that exponentially increasing antigen stimulation is a determinant of immune reactivity. Combined with a bistable system and a simple feedback repression mechanism, an interesting phenomenon emerges as a tumor growth rate increases: elimination, tolerance (tumor growth), again elimination, and finally a second zone of tolerance (tumor escape). This prediction from our model is analogous to the ``two-zone tumor tolerance'' phenomenon experimentally validated since the mid 1970s. Moreover, we provide a plausible biological instantiation of our circuit using combinations of regulatory and effector T cells. |
This note provides a simple result showing, under suitable technical assumptions, that if a system S adapts to a class of external signals U, then S must necessarily contain a subsystem which is capable of generating all the signals in U. It is not assumed that regulation is robust, nor is there a prior requirement for the system to be partitioned into separate plant and controller components. Instead, a "signal detection" capability is imposed. These weaker assumptions make the result better applicable to cellular phenomena such as the adaptation of E-coli chemotactic tumbling rate to constant concentrations. |
Conference articles |
Integral feedback can help achieve robust tracking independently of external disturbances. Motivated by this knowledge, biological engineers have proposed various designs of biomolecular integral feedback controllers to regulate biological processes. In this paper, we theoretically analyze the operation of a particular synthetic biomolecular integral controller, which we have recently proposed and implemented experimentally. Using a combination of methods, ranging from linearized analysis to sum-of-squares (SOS) Lyapunov functions, we demonstrate that, when the controller is operated in closed-loop, it is capable of providing integral corrections to the concentration of an output species in such a manner that the output tracks a reference signal linearly over a large dynamic range. We investigate the output dependency on the reaction parameters through sensitivity analysis, and quantify performance using control theory metrics to characterize response properties, thus providing clear selection guidelines for practical applications. We then demonstrate the stable operation of the closed-loop control system by constructing quartic Lyapunov functions using SOS optimization techniques, and establish global stability for a unique equilibrium. Our analysis suggests that by incorporating effective molecular sequestration, a biomolecular closed-loop integral controller that is capable of robustly regulating gene expression is feasible. |
This tutorial paper deals with the Internal Model Principle (IMP) from different perspectives. The goal is to start from the principle as introduced and commonly used in the control theory and then enlarge the vision to other fields where "internal models" play a role. The biology and neuroscience fields are specifically targeted in the paper. The paper ends by presenting an "abstract" theory of IMP applicable to a large class of systems. |
In this article, we show that scale-invariant systems, as well as systems invariant with respect to other input transformations, can realize nonlinear differential operators: when excited by inputs obeying functional forms characteristic for a given class of invariant systems, the systems' outputs converge to constant values directly quantifying the speed of the input. |
The proper function of many biological systems requires that external perturbations be detected, allowing the system to adapt to these environmental changes. It is now well established that this dual detection and adaptation requires that the system have an internal model in the feedback loop. In this paper we relax the requirement that the response of the system adapt perfectly, but instead allow regulation to within a neighborhood of zero. We show, in a nonlinear setting, that systems with the ability to detect input signals and approximately adapt require an approximate model of the input. We illustrate our results by analyzing a well-studied biological system. These results generalize previous work which treats the perfectly adapting case. |
This conference paper presented a version of an approximate internal model principle, for linear systems. A subsequent paper at the IFAC 2008 conference improved on this result by extending it to a class of nonlinear systems. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html