BACK TO INDEX

Publications by Eduardo D. Sontag in year 1993
Articles in journal or book chapters
  1. F. Albertini, E.D. Sontag, and V. Maillot. Uniqueness of weights for neural networks. In R. Mammone, editor, Artificial Neural Networks for Speech and Vision, pages 115-125. Chapman and Hall, London, 1993. [PDF] Keyword(s): machine learning, neural networks, recurrent neural networks.
    Abstract:
    In this short expository survey, we sketch various known facts about uniqueness of weights in neural networks, including results about recurrent nets, and we provide a new and elementary complex-variable proof of a uniqueness result that applies in the single hidden layer case.


  2. E.D. Sontag. Neural networks for control. In H. L. Trentelman and J. C. Willems, editors, Essays on control: perspectives in the theory and its applications (Groningen, 1993), volume 14 of Progr. Systems Control Theory, pages 339-380. Birkhäuser Boston, Boston, MA, 1993. Note: A longer version (tech report with more details) is here: http://sontaglab.org/FTPDIR/neural-nets-siemens.pdf. [PDF] Keyword(s): neural networks, recurrent neural networks, machine learning, neural networks.
    Abstract:
    This paper has an expository introduction to two related topics: (a) Some mathematical results regarding "neural networks", and (b) so-called "neurocontrol" and "learning control" (each part can be read independently of the other). It was prepared for a short course given at the 1993 European Control Conference.


  3. E.D. Sontag and H.J. Sussmann. Time-optimal control of manipulators (reprint of 1986 IEEE Int Conf on Robotics and Automation paper. In M.W. Spong, F.L. Lewis, and C.T. Abdallah, editors, Robot Control, pages 266-271. IEEE Press, New York, 1993. Keyword(s): robotics, optimal control.


  4. F. Albertini and E.D. Sontag. Discrete-time transitivity and accessibility: analytic systems. SIAM J. Control Optim., 31(6):1599-1622, 1993. [PDF] [doi:http://dx.doi.org/10.1137/0331075] Keyword(s): controllability, discrete-time systems, accessibility, real-analytic functions.
    Abstract:
    A basic open question for discrete-time nonlinear systems is that of determining when, in analogy with the classical continuous-time "positive form of Chow's Lemma", accessibility follows from transitivity of a natural group action. This paper studies the problem, and establishes the desired implication for analytic systems in several cases: (i) compact state space, (ii) under a Poisson stability condition, and (iii) in a generic sense. In addition, the paper studies accessibility properties of the "control sets" recently introduced in the context of dynamical systems studies. Finally, various examples and counterexamples are provided relating the various Lie algebras introduced in past work.


  5. F. Albertini and E.D. Sontag. For neural networks, function determines form. Neural Networks, 6(7):975-990, 1993. [PDF] Keyword(s): machine learning, neural networks, identifiability, recurrent neural networks, realization theory, observability, neural networks.
    Abstract:
    This paper shows that the weights of continuous-time feedback neural networks x'=s(Ax+Bu), y=Cx (where s is a sigmoid) are uniquely identifiable from input/output measurements. Under very weak genericity assumptions, the following is true: Assume given two nets, whose neurons all have the same nonlinear activation function s; if the two nets have equal behaviors as "black boxes" then necessarily they must have the same number of neurons and -except at most for sign reversals at each node- the same weights. Moreover, even if the activations are not a priori known to coincide, they are shown to be also essentially determined from the external measurements.


  6. R. Koplon and E.D. Sontag. Linear systems with sign-observations. SIAM J. Control Optim., 31(5):1245-1266, 1993. [PDF] [doi:http://dx.doi.org/10.1137/0331059] Keyword(s): observability.
    Abstract:
    This paper deals with systems that are obtained from linear time-invariant continuous- or discrete-time devices followed by a function that just provides the sign of each output. Such systems appear naturally in the study of quantized observations as well as in signal processing and neural network theory. Results are given on observability, minimal realizations, and other system-theoretic concepts. Certain major differences exist with the linear case, and other results generalize in a surprisingly straightforward manner.


Conference articles
  1. F. Albertini and E.D. Sontag. Controllability of discrete-time nonlinear systems. In Systems and Networks: Mathematical Theory and Applications, Proc. MTNS '93, Vol. 2, Akad. Verlag, Regensburg, pages 35-38, 1993.


  2. F. Albertini and E.D. Sontag. Identifiability of discrete-time neural networks. In Proc. European Control Conf., Groningen, June 1993, pages 460-465, 1993. Keyword(s): machine learning, neural networks, recurrent neural networks.


  3. F. Albertini and E.D. Sontag. State observability in recurrent neural networks. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 3706-3707, 1993. Keyword(s): machine learning, neural networks, observability, recurrent neural networks.


  4. F. Albertini and E.D. Sontag. Uniqueness of weights for recurrent nets. In Systems and Networks: Mathematical Theory and Applications, Proc. MTNS '93, Vol. 2, Akad. Verlag, Regensburg, pages 599-602, 1993. Note: Full version, never submitted for publication, is here: http://sontaglab.org/FTPDIR/93mtns-nn-extended.pdf. [PDF] Keyword(s): machine learning, neural networks, identifiability, recurrent neural networks.
    Abstract:
    This paper concerns recurrent networks x'=s(Ax+Bu), y=Cx, where s is a sigmoid, in both discrete time and continuous time. The paper establishes parameter identifiability under stronger assumptions on the activation than in "For neural networks, function determines form", but on the other hand deals with arbitrary (nonzero) initial states.


  5. J. L. Balcázar, R. Gavaldà, H. T. Siegelmann, and E.D. Sontag. Some structural complexity aspects of neural computation. In Proceedings of the Eighth Annual Structure in Complexity Theory Conference (San Diego, CA, 1993), Los Alamitos, CA, pages 253-265, 1993. IEEE Comput. Soc. Press. [PDF] Keyword(s): machine learning, analog computing, neural networks, computational complexity, super-Turing computation, theory of computing and complexity.
    Abstract:
    Recent work by H.T. Siegelmann and E.D. Sontag (1992) has demonstrated that polynomial time on linear saturated recurrent neural networks equals polynomial time on standard computational models: Turing machines if the weights of the net are rationals, and nonuniform circuits if the weights are real. Here, further connections between the languages recognized by such neural nets and other complexity classes are developed. Connections to space-bounded classes, simulation of parallel computational models such as Vector Machines, and a discussion of the characterizations of various nonuniform classes in terms of Kolmogorov complexity are presented.


  6. C. Darken, M.J. Donahue, L. Gurvits, and E.D. Sontag. Rate of approximation results motivated by robust neural network learning. In COLT '93: Proceedings of the sixth annual conference on Computational learning theory, New York, NY, USA, pages 303-309, 1993. ACM Press. [doi:http://doi.acm.org/10.1145/168304.168357] Keyword(s): machine learning, neural networks, optimization problems, approximation theory.


  7. R. Koplon and E.D. Sontag. Sign-linear systems as cascades of automata and continuous variable systems. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 2290-2291, 1993.


  8. G.A. Lafferriere and E.D. Sontag. Remarks on control Lyapunov functions for discontinuous stabilizing feedback. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 306-308, 1993. [PDF] Keyword(s): feedback stabilization.
    Abstract:
    We present a formula for a stabilizing feedback law under the assumption that a piecewise smooth control-Lyapunov function exists. The resulting feedback is continuous at the origin and smooth everywhere except on a hypersurface of codimension 1, assuming that certain transversality conditions are imposed there.


  9. Y. Lin, E.D. Sontag, and Y. Wang. Lyapunov-function characterizations of stability and stabilization for parameterized families of systems. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 1978-1983, 1993.


  10. W. Liu, Y. Chitour, and E.D. Sontag. Remarks on finite gain stabilizability of linear systems subject to input saturation. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 1808-1813, 1993. Keyword(s): saturation, bounded inputs.


  11. A. Macintyre and E.D. Sontag. Finiteness results for sigmoidal neural networks. In STOC '93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, New York, NY, USA, pages 325-334, 1993. ACM Press. [PDF] [doi:http://doi.acm.org/10.1145/167088.167192] Keyword(s): machine learning, neural networks, theory of computing and complexity, real-analytic functions.
    Abstract:
    This paper deals with analog circuits. It establishes the finiteness of VC dimension, teaching dimension, and several other measures of sample complexity which arise in learning theory. It also shows that the equivalence of behaviors, and the loading problem, are effectively decidable, modulo a widely believed conjecture in number theory. The results, the first ones that are independent of weight size, apply when the gate function is the "standard sigmoid" commonly used in neural networks research. The proofs rely on very recent developments in the elementary theory of real numbers with exponentiation. (Some weaker conclusions are also given for more general analytic gate functions.) Applications to learnability of sparse polynomials are also mentioned.


  12. H.T. Siegelmann and E.D. Sontag. Analog computation via neural networks. In Proc. 2nd Israel Symposium on Theory of Computing and Systems (ISTCS93), IEEE Computer Society Press, 1993, 1993. Keyword(s): analog computing, neural networks, computational complexity, super-Turing computation, recurrent neural networks.


  13. E.D. Sontag. Gradient techniques for systems with no drift: A classical idea revisited. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 2706-2711, 1993. [PDF] Keyword(s): path-planning, systems without drift, nonlinear control, controllability, real-analytic functions.
    Abstract:
    This paper proposes a technique for the control of analytic systems with no drift. It is based on the generation of "nonsingular loops" which allow linearized controllability. Once such loops are available, it is possible to employ standard Newton or steepest descent methods. The theoretical justification of the approach relies on results on genericity of nonsingular controls as well as a simple convergence lemma.


  14. H.J. Sussmann, E.D. Sontag, and Y. Yang. A general result on the stabilization of linear systems using bounded controls. In Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pages 1802-1807, 1993. Keyword(s): saturation, bounded inputs.


  15. Y. Yang and E.D. Sontag. Stabilization with saturated actuators, a worked example: F-8 longitudinal flight control. In Proc. 1993 IEEE Conf. on Aerospace Control Systems, Thousand Oaks, CA, May 1993, pages 289-293, 1993. [PDF] Keyword(s): saturation, bounded inputs, aircraft, airplanes.
    Abstract:
    This paper develops in detail an explicit design for control under saturation limits for the linearized equations of longitudinal flight control for an F-8 aircraft, and tests the obtained controller on the original nonlinear model.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Mon Apr 8 08:33:45 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html