Publications by Eduardo D. Sontag in year 2008 |
Articles in journal or book chapters |
In this expository paper, we provide a streamlined version of the key lemma on stability of interconnections due to Vidyasagar and Moylan and Hill, and then show how it its hypotheses may be verified for network structures of great interest in biology. |
The transitive reduction problem is that of inferring a sparsest possible biological signal transduction network consistent with a set of experimental observations, with a goal to minimize false positive inferences even if risking false negatives. This paper provides computational complexity results as well as approximation algorithms with guaranteed performance. |
In this note, we show how certain properties of Goldbeter's 1995 model for circadian oscillations can be proved mathematically, using techniques from the recently developed theory of monotone systems with inputs and outputs. The theory establishes global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, based on the application of a tight small gain condition. This stability persists even under arbitrary delays in the feedback loop. On the other hand, when the condition is violated a Poincare'-Bendixson result allows to conclude existence of oscillations, for sufficiently high delays. |
Strongly monotone systems of ordinary differential equations which have a certain translation-invariance property are shown to have the property that all projected solutions converge to a unique equilibrium. This result may be seen as a dual of a well-known theorem of Mierczynski for systems that satisfy a conservation law. As an application, it is shown that enzymatic futile cycles have a global convergence property. |
This paper presents a stability test for a class of interconnected nonlinear systems motivated by biochemical reaction networks. One of the main results determines global asymptotic stability of the network from the diagonal stability of a "dissipativity matrix" which incorporates information about the passivity properties of the subsystems, the interconnection structure of the network, and the signs of the interconnection terms. This stability test encompasses the "secant criterion" for cyclic networks presented in our previous paper, and extends it to a general interconnection structure represented by a graph. A second main result allows one to accommodate state products. This extension makes the new stability criterion applicable to a broader class of models, even in the case of cyclic systems. The new stability test is illustrated on a mitogen activated protein kinase (MAPK) cascade model, and on a branched interconnection structure motivated by metabolic networks. Finally, another result addresses the robustness of stability in the presence of diffusion terms in a compartmental system made out of identical systems. |
Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input/output dynamic characteristics of transcriptional components, focusing on a property, which we call "retroactivity," that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter binding sites, or when the affinity of such binding sites is high. In order to attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation/dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast time scales of the phosphorylation and dephosphorylation reactions. Such a mechanism, when viewed as a signal transduction system, has thus an inherent capacity to provide insulation and hence to increase the modularity of the system in which it is placed. |
This paper generalizes the approach to bistability based on the existence of characteristics for open-loop monotone systems to the case when characteristics do not exist. A set-valued version is provided, instead. |
A class of distributed systems with a cyclic interconnection structure is considered. These systems arise in several biochemical applications and they can undergo diffusion driven instability which leads to a formation of spatially heterogeneous patterns. In this paper, a class of cyclic systems in which addition of diffusion does not have a destabilizing effect is identified. For these systems global stability results hold if the "secant" criterion is satisfied. In the linear case, it is shown that the secant condition is necessary and sufficient for the existence of a decoupled quadratic Lyapunov function, which extends a recent diagonal stability result to partial differential equations. For reaction-diffusion equations with nondecreasing coupling nonlinearities global asymptotic stability of the origin is established. All of the derived results remain true for both linear and nonlinear positive diffusion terms. Similar results are shown for compartmental systems. |
This paper presents a software tool for inference and simplification of signal transduction networks. The method relies on the representation of observed indirect causal relationships as network paths, using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. We illustrate the biological usability of our software by applying it to a previously published signal transduction network and by using it to synthesize and simplify a novel network corresponding to activation-induced cell death in large granular lymphocyte leukemia. |
We find that three intracellular regulatory networks contain far more positive "sign-consistent" feedback and feed-forward loops than negative loops. Negative inconsistent loops can be more easily removed from real regulatory network topologies compared to removing negative loops from shuffled networks. The abundance of positive feed-forward loops and feedback loops in real networks emerges from the presence of hubs that are enriched with either negative or positive links, and from the non-uniform connectivity distribution. Boolean dynamics applied to the signaling network further support the stability of its topology. These observations suggest that the "close-to-monotone" structure of intracellular regulatory networks may contribute to the dynamical stability observed in cellular behavior. |
The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation. |
The ``reverse engineering problem'' in systems biology is that of unraveling of the web of interactions among the components of protein and gene regulatory networks, so as to map out the direct or local interactions among components. These direct interactions capture the topology of the functional network. An intrinsic difficulty in capturing these direct interactions, at least in intact cells, is that any perturbation to a particular gene or signaling component may rapidly propagate throughout the network, thus causing global changes which cannot be easily distinguished from direct effects. Thus, a major goal in reverse engineering is to use these observed global responses - such as steady-state changes in concentrations of active proteins, mRNA levels, or transcription rates - in order to infer the local interactions between individual nodes. One approach to solving this global-to-local problem is the ``Modular Response Analysis'' (MRA) method proposed in work of the author with Kholodenko et. al. (PNAS, 2002) and further elaborated in other papers. The basic method deals only with steady-state data. However, recently, quasi-steady state MRA has been used by Santos et. al. (Nature Cell Biology, 2007) for quantifying positive and negative feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromocytoma (PC-12) cells. This paper presents an overview of the MRA technique, as well as a generalization of the algorithm to that quasi-steady state case. |
Feedback loops play an important role in determining the dynamics of biological networks. In order to study the role of negative feedback loops, this paper introduces the notion of "distance to positive feedback (PF-distance)" which in essence captures the number of "independent" negative feedback loops in the network, a property inherent in the network topology. Through a computational study using Boolean networks it is shown that PF-distance has a strong influence on network dynamics and correlates very well with the number and length of limit cycles in the phase space of the network. To be precise, it is shown that, as the number of independent negative feedback loops increases, the number (length) of limit cycles tends to decrease (increase). These conclusions are consistent with the fact that certain natural biological networks exhibit generally regular behavior and have fewer negative feedback loops than randomized networks with the same numbers of nodes and connectivity. |
This note studies the number of positive steady states in biomolecular reactions consisting of activation/deactivation futile cycles, such as those arising from phosphorylations and dephosphorylations at each level of a MAPK cascade. It is shown that: (1) for some parameter ranges, there are at least n+1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n-1 steady states (so, for n=2, there are no more than 3 steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n+1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state. |
The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation "futile cycle" motif which plays a central role in eukaryotic cell signaling The workis heavily based on Fenichel-Jones geometric singular perturbation theory. |
Conference articles |
The proper function of many biological systems requires that external perturbations be detected, allowing the system to adapt to these environmental changes. It is now well established that this dual detection and adaptation requires that the system have an internal model in the feedback loop. In this paper we relax the requirement that the response of the system adapt perfectly, but instead allow regulation to within a neighborhood of zero. We show, in a nonlinear setting, that systems with the ability to detect input signals and approximately adapt require an approximate model of the input. We illustrate our results by analyzing a well-studied biological system. These results generalize previous work which treats the perfectly adapting case. |
Conference version of paper "Conditions for global stability of monotone tridiagonal systems with negative feedback" |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html