Publications of Eduardo D. Sontag jointly with M.A. Al-Radhawi |
Articles in journal or book chapters |
Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrate via the circulatory system and subsequently settle in distant organs after undergoing the reverse transition. The core gene regulatory network controlling these transitions consists of a system made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this work, we formulate a mathematical model and analyze its long-term behavior. We start by developing a detailed reaction network with 24 state variables. Assuming fast promoter and mRNA kinetics, we then show how to reduce our model to a monotone four-dimensional system. For the reduced system, monotone dynamical systems theory can be used to prove generic convergence to the set of equilibria for all bounded trajectories. The theory does not apply to the full model, which is not monotone, but we briefly discuss results for singularly-perturbed monotone systems that provide a tool to extend convergence results from reduced to full systems, under appropriate time separation assumptions. |
This paper deals with the analysis of the dynamics of chemical reaction networks, developing a theoretical framework based only on graphical knowledge and applying regardless of the particular form of kinetics. It paper introduces a class of networks that are "structurally (mono) attractive", by which we mean that they are incapable of exhibiting multiple steady states, oscillation, or chaos by the virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function which we call a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. We study basic motifs, three-body binding, and transcriptional networks. We focus on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, ERK signaling, and the Ribosome Flow Model. |
In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network. |
We consider a nonlinear SISO system that is a cascade of a scalar "bottleneck entrance" with a stable positive linear system. In response to any periodic inflow, all solutions converge to a unique periodic solution with the same period. We study the problem of maximizing the averaged throughput via controlled switching. We compare two strategies: 1) switching between a high and low value, and 2 ~using a constant inflow equal to the prescribed mean value. We show that no possible switching policy can outperform a constant inflow rate, though it can approach it asymptotically. We describe several potential applications of this problem in traffic systems, ribosome flow models, and scheduling at security checks. |
Conference articles |
Integral feedback can help achieve robust tracking independently of external disturbances. Motivated by this knowledge, biological engineers have proposed various designs of biomolecular integral feedback controllers to regulate biological processes. In this paper, we theoretically analyze the operation of a particular synthetic biomolecular integral controller, which we have recently proposed and implemented experimentally. Using a combination of methods, ranging from linearized analysis to sum-of-squares (SOS) Lyapunov functions, we demonstrate that, when the controller is operated in closed-loop, it is capable of providing integral corrections to the concentration of an output species in such a manner that the output tracks a reference signal linearly over a large dynamic range. We investigate the output dependency on the reaction parameters through sensitivity analysis, and quantify performance using control theory metrics to characterize response properties, thus providing clear selection guidelines for practical applications. We then demonstrate the stable operation of the closed-loop control system by constructing quartic Lyapunov functions using SOS optimization techniques, and establish global stability for a unique equilibrium. Our analysis suggests that by incorporating effective molecular sequestration, a biomolecular closed-loop integral controller that is capable of robustly regulating gene expression is feasible. |
Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model. |
In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining different cell types. We study here the "PU.1/GATA-1 circuit" that controls the development of mature blood cells from hematopoietic stem cells (HSCs). We introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge and find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others. |
Internal reports |
Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state. |
Metronomic chemotherapy can drastically enhance immunogenic tumor cell death. However, the responsible mechanisms are still incompletely understood. Here, we develop a mathematical model to elucidate the underlying complex interactions between tumor growth, immune system activation, and therapy-mediated immunogenic cell death. Our model is conceptually simple, yet it provides a surprisingly excellent fit to empirical data obtained from a GL261 mouse glioma model treated with cyclophosphamide on a metronomic schedule. The model includes terms representing immune recruitment as well as the emergence of drug resistance during prolonged metronomic treatments. Strikingly, a fixed set of parameters, not adjusted for individuals nor for drug schedule, excellently recapitulates experimental data across various drug regimens, including treatments administered at intervals ranging from 6 to 12 days. Additionally, the model predicts peak immune activation times, rediscovering experimental data that had not been used in parameter fitting or in model construction. The validated model was then used to make predictions about expected tumor-immune dynamics for novel drug administration schedules. Notably, the validated model suggests that immunostimulatory and immunosuppressive intermediates are responsible for the observed phenomena of resistance and immune cell recruitment, and thus for variation of responses with respect to different schedules of drug administration. |
We consider a compartmental model for ribosome flow during RNA translation, the Ribosome Flow Model (RFM). This model includes a set of positive transition rates that control the flow from every site to the consecutive site. It has been shown that when these rates are time-varying and jointly T-periodic, the protein production rate converges to a unique T-periodic pattern. Here, we study a problem that can be roughly stated as: can periodic rates yield a higher average production rate than constant rates? We rigorously formulate this question and show via simulations, and rigorous analysis in one simple case, that the answer is no. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html