Publications by Eduardo D. Sontag in year 1995 |
Articles in journal or book chapters |
An encyclopedia-type article on foundations of input/output stability. |
This paper discusses various continuity and incremental-gain properties for neutrally stable linear systems under linear feedback subject to actuator saturation. The results complement our previous ones, which applied to the same class of problems and provided finite-gain stability. |
We consider the problem of characterizing possible supply functions for a given dissipative nonlinear system, and provide a result that allows some freedom in the modification of such functions. |
Blum and Rivest showed that any possible neural net learning algorithm based on fixed architectures faces severe computational barriers. This paper extends their NP-completeness result, which applied only to nets based on hard threshold activations, to nets that employ a particular continuous activation. In view of neural network practice, this is a more relevant result to understanding the limitations of backpropagation and related techniques. |
We deal with the question of obtaining explicit feedback control laws that stabilize a nonlinear system, under the assumption that a "control Lyapunov function" is known. In previous work, the case of unbounded controls was considered. Here we obtain results for bounded and/or positive controls. We also provide some simple preliminary remarks regarding a set stability version of the problem and a version for systems subject to disturbances. |
This paper studies various stability issues for parameterized families of systems, including problems of stabilization with respect to sets. The study of such families is motivated by robust control applications. A Lyapunov-theoretic necessary and sufficient characterization is obtained for a natural notion of robust uniform set stability; this characterization allows replacing ad hoc conditions found in the literature by more conceptual stability notions. We then use these techniques to establish a result linking state space stability to ``input to state'' (bounded-input bounded-state) stability. In addition, the preservation of stabilizability under certain types of cascade interconnections is analyzed. |
This paper deals with finite size networks which consist of interconnections of synchronously evolving processors. Each processor updates its state by applying a "sigmoidal" function to a rational-coefficient linear combination of the previous states of all units. We prove that one may simulate all Turing Machines by such nets. In particular, one can simulate any multi-stack Turing Machine in real time, and there is a net made up of 886 processors which computes a universal partial-recursive function. Products (high order nets) are not required, contrary to what had been stated in the literature. Non-deterministic Turing Machines can be simulated by non-deterministic rational nets, also in real time. The simulation result has many consequences regarding the decidability, or more generally the complexity, of questions about recursive nets. |
This paper proposes a simple numerical technique for the steering of arbitrary analytic systems with no drift. It is based on the generation of "nonsingular loops" which allow linearized controllability along suitable trajetories. Once such loops are available, it is possible to employ standard Newton or steepest descent methods, as classically done in numerical control. The theoretical justification of the approach relies on recent results establishing the genericity of nonsingular controls, as well as a simple convergence lemma. |
The "input to state stability" (ISS) property provides a natural framework in which to formulate notions of stability with respect to input perturbations. In this expository paper, we review various equivalent definitions expressed in stability, Lyapunov-theoretic, and dissipation terms. We sketch some applications to the stabilization of cascades of systems and of linear systems subject to control saturation. |
We consider the problem of characterizing possible supply functions for a given dissipative nonlinear system, and provide a result that allows some freedom in the modification of such functions. |
We show that the well-known Lyapunov sufficient condition for input-to-state stability is also necessary, settling positively an open question raised by several authors during the past few years. Additional characterizations of the ISS property, including one in terms of nonlinear stability margins, are also provided. |
This paper deals with the orders of input/output equations satisfied by nonlinear systems. Such equations represent differential (or difference, in the discrete-time case) relations between high-order derivatives (or shifts, respectively) of input and output signals. It is shown that, under analyticity assumptions, there cannot exist equations of order less than the minimal dimension of any observable realization; this generalizes the known situation in the classical linear case. The results depend on new facts, themselves of considerable interest in control theory, regarding universal inputs for observability in the discrete case, and observation spaces in both the discrete and continuous cases. Included in the paper is also a new and simple self-contained proof of Sussmann's universal input theorem for continuous-time analytic systems. |
Conference articles |
We suggest that a very natural mathematical framework for the study of dissipation -in the sense of Willems, Moylan and Hill, and others- is that of indefinite quasimetric spaces. Several basic facts about dissipative systems are seen to be simple consequences of the properties of such spaces. Quasimetric spaces provide also one natural context for optimal control problems, and even for "gap" formulations of robustness. |
This paper deals with the computational complexity, and in some cases undecidability, of several problems in nonlinear control. The objective is to compare the theoretical difficulty of solving such problems to the corresponding problems for linear systems. In particular, the problem of null-controllability for systems with saturations (of a "neural network" type) is mentioned, as well as problems regarding piecewise linear (hybrid) systems. A comparison of accessibility, which can be checked fairly simply by Lie-algebraic methods, and controllability, which is at least NP-hard for bilinear systems, is carried out. Finally, some remarks are given on analog computation in this context. |
Invited talk at the 1994 ICM. Paper deals with the notion of observables for nonlinear systems, and their role in realization theory, minimality, and several control and path planning questions. |
It is shown that the existence of a continuous control-Lyapunov function (CLF) is necessary and sufficient for null asymptotic controllability of nonlinear finite-dimensional control systems. The CLF condition is expressed in terms of a concept of generalized derivative (upper contingent derivative). This result generalizes to the non-smooth case the theorem of Artstein relating closed-loop feedback stabilization to smooth CLF's. It relies on viability theory as well as optimal control techniques. A "non-strict" version of the results, analogous to the LaSalle Invariance Principle, is also provided. |
Previous characterizations of ISS-stability are shown to generalize without change to the case of stability with respect to sets. Some results on ISS-stabilizability are mentioned as well. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html