Publications about 'discrete time' |
Books and proceedings |
(This is a monograph based upon Eduardo Sontag's Ph.D. thesis. The contents are basically the same as the thesis, except for a very few revisions and extensions.) This work deals the realization theory of discrete-time systems (with inputs and outputs, in the sense of control theory) defined by polynomial update equations. It is based upon the premise that the natural tools for the study of the structural-algebraic properties (in particular, realization theory) of polynomial input/output maps are provided by algebraic geometry and commutative algebra, perhaps as much as linear algebra provides the natural tools for studying linear systems. Basic ideas from algebraic geometry are used throughout in system-theoretic applications (Hilbert's basis theorem to finite-time observability, dimension theory to minimal realizations, Zariski's Main Theorem to uniqueness of canonical realizations, etc). In order to keep the level elementary (in particular, not utilizing sheaf-theoretic concepts), certain ideas like nonaffine varieties are used only implicitly (eg., quasi-affine as open sets in affine varieties) or in technical parts of a few proofs, and the terminology is similarly simplified (e.g., "polynomial map" instead of "scheme morphism restricted to k-points", or "k-space" instead of "k-points of an affine k-scheme"). |
Articles in journal or book chapters |
It is shown that, for neutrally stable discrete-time linear systems subject to actuator saturation, finite gain lp stabilization can be achieved by linear output feedback, for all p>1. An explicit construction of the corresponding feedback laws is given. The feedback laws constructed also result in a closed-loop system that is globally asymptotically stable, and in an input-to-state estimate. |
For analytic discrete-time systems, it is shown that uniform forward accessibility implies the generic existence of universal nonsingular control sequences. A particular application is given by considering forward accessible systems on compact manifolds. For general systems, it is proved that the complement of the set of universal sequences of infinite length is of the first category. For classes of systems satisfying a descending chain condition, and in particular for systems defined by polynomial dynamics, forward accessibility implies uniform forward accessibility. |
This paper deals with the problem of global stabilization of linear discrete time systems by means of bounded feedback laws. The main result proved is an analog of one proved for the continuous time case by the authors, and shows that such stabilization is possible if and only if the system is stabilizable with arbitrary controls and the transition matrix has spectral radius less or equal to one. The proof provides in principle an algorithm for the construction of such feedback laws, which can be implemented either as cascades or as parallel connections (``single hidden layer neural networks'') of simple saturation functions. |
Controllability questions for discrete-time nonlinear systems are addressed in this paper. In particular, we continue the search for conditions under which the group-like notion of transitivity implies the stronger and semigroup-like property of forward accessibility. We show that this implication holds, pointwise, for states which have a weak Poisson stability property, and globally, if there exists a global "attractor" for the system. |
This paper concerns recurrent networks x'=s(Ax+Bu), y=Cx, where s is a sigmoid, in both discrete time and continuous time. Our main result is that observability can be characterized, if one assumes certain conditions on the nonlinearity and on the system, in a manner very analogous to that of the linear case. Recall that for the latter, observability is equivalent to the requirement that there not be any nontrivial A-invariant subspace included in the kernel of C. We show that the result generalizes in a natural manner, except that one now needs to restrict attention to certain special "coordinate" subspaces. |
This paper presents a geometric study of controllability for discrete-time nonlinear systems. Various accessibility properties are characterized in terms of Lie algebras of vector fields. Some of the results obtained are parallel to analogous ones in continuous-time, but in many respects the theory is substantially different and many new phenomena appear. |
We investigate the effect of sampling on linearization for continuous time systems. It is shown that the discretized system is linearizable by state coordinate change for an open set of sampling times if and only if the continuous time system is linearizable by state coordinate change. Also, it is shown that linearizability via digital feedback imposes highly nongeneric constraints on the structure of the plant, even if this is known to be linearizable with continuous-time feedback. |
This paper studies accessibility (weak controllability) of bilinear systems under constant sampling rates. It is shown that the property is preserved provided that the sampling period satisfies a condition related to the eigenvalues of the autonomous dynamics matrix. This condition generalizes the classical Kalman-Ho-Narendra criterion which is well known in the linear case, and which, for observability, results in the classical Nyquist theorem. |
For continuous time analytic input/output maps, the existence of a singular differential equation relating derivatives of controls and outputs is shown to be equivalent to bilinear realizability. A similar result holds for the problem of immersion into bilinear systems. The proof is very analogous to that of the corresponding, and previously known, result for discrete time. |
Weak controllability of bilinear systems is preserved under sampling provided that the sampling period satisfies a condition related to the eigenvalues of the autonomous dynamics matrix. This condition generalizes the classical Kalman-Ho-Narendra criterion which is well known in the linear case. |
In this note we present an algebraic approach to the proof that a linear system with matrices (A,B) is null-controllable using bounded inputs iff it is null-controllable (with unbounded inputs) and all eigenvalues of A have nonpositive real parts (continuous time) or magnitude not greater than one (discrete time). We also give the analogous results for the asymptotic case. Finally, we give an interpretation of these results in the context of local nonlinear controllability. |
A state-space realization theory is presented for a wide class of discrete time input/output behaviors. Although In many ways restricted, this class does include as particular cases those treated in the literature (linear, multilinear, internally bilinear, homogeneous), as well ss certain nonanalytic nonlinearities. The theory is conceptually simple, and matrix-theoretic algorithms are straightforward. Finite-realizability of these behaviors by state-affine systems is shown to be equivalent both to the existence of high-order input/output equadons and to realizability by more general types of systems. |
Considered here are a type of discrete-time systems which have algebraic constraints on their state set and for which the state transitions are given by (arbitrary) polynomial functions of the inputs and state variables. The paper studies reachability in bounded time, the problem of deciding whether two systems have the same external behavior by applying finitely many inputs, the fact that finitely many inputs (which can be chosen quite arbitrarily) are sufficient to separate those states of a system which are distinguishable, and introduces the subject of realization theory for this class of systems. |
Conference articles |
This paper studies the input-to-state stability (ISS) property for discrete-time nonlinear systems. We show that many standard ISS results may be extended to the discrete-time case. More precisely, we provide a Lyapunov-like sufficient condition for ISS, and we show the equivalence between the ISS property and various other properties, as well as provide a small gain theorem. |
This paper concerns recurrent networks x'=s(Ax+Bu), y=Cx, where s is a sigmoid, in both discrete time and continuous time. The paper establishes parameter identifiability under stronger assumptions on the activation than in "For neural networks, function determines form", but on the other hand deals with arbitrary (nonzero) initial states. |
This paper shows how to extend recent results of Colonius and Kliemann, regarding connections between chaos and controllability, from continuous to discrete time. The extension is nontrivial because the results all rely on basic properties of the accessibility Lie algebra which fail to hold in discrete time. Thus, this paper first develops further results in nonlinear accessibility, and then shows how a theorem can be proved, which while analogous to the one given in the work by Colonius and Klieman, also exhibits some important differences. A counterexample is used to show that the theorem given in continuous time cannot be generalized in a straightforward manner. |
This paper studies various types of input/output representations for nonlinear continuous time systems. The algebraic and analytic i/o equations studied in previous papers by the authors are generalized to integral and integro-differential equations, and an abstract notion is also considered. New results are given on generic observability, and these results are then applied to give conditions under which that the minimal order of an equation equals the minimal possible dimension of a realization, just as with linear systems but in contrast to the discrete time nonlinear theory. |
In the context of realization theory, conditions are given for the possibility of simulating a given discrete time system, using immersion and/or feedback, by linear or state-affine systems. |
This note addresses the following problem: Find conditions under which a continuous-time (nonlinear) system gives rise, under constant rate sampling, to a discrete-time system which satisfies the accessibility property. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html