Publications about 'Control' |
Books and proceedings |
This book is copyrighted by Springer-Verlag. Springer has kindly allowed me to place a copy on the web, as a reference and for ease of web searches. Please consider buying your own hardcopy. |
The second edition (1998) is now online; please follow that link. |
(This is a monograph based upon Eduardo Sontag's Ph.D. thesis. The contents are basically the same as the thesis, except for a very few revisions and extensions.) This work deals the realization theory of discrete-time systems (with inputs and outputs, in the sense of control theory) defined by polynomial update equations. It is based upon the premise that the natural tools for the study of the structural-algebraic properties (in particular, realization theory) of polynomial input/output maps are provided by algebraic geometry and commutative algebra, perhaps as much as linear algebra provides the natural tools for studying linear systems. Basic ideas from algebraic geometry are used throughout in system-theoretic applications (Hilbert's basis theorem to finite-time observability, dimension theory to minimal realizations, Zariski's Main Theorem to uniqueness of canonical realizations, etc). In order to keep the level elementary (in particular, not utilizing sheaf-theoretic concepts), certain ideas like nonaffine varieties are used only implicitly (eg., quasi-affine as open sets in affine varieties) or in technical parts of a few proofs, and the terminology is similarly simplified (e.g., "polynomial map" instead of "scheme morphism restricted to k-points", or "k-space" instead of "k-points of an affine k-scheme"). |
Articles in journal or book chapters |
Biological systems have been widely studied as complex dynamic systems that evolve with time in response to the internal resources abundance and external perturbations due to their common features. Integration of systems and synthetic biology provides a consolidated framework that draws system-level connections among biology, mathematics, engineering, and computer sciences. One major problem in current synthetic biology research is designing and controlling the synthetic circuits to perform reliable and robust behaviors as they utilize common transcription and translational resources among the circuits and host cells. While cellular resources are often limited, this results in a competition for resources by different genes and circuits, which affect the behaviors of synthetic genetic circuits. The manner competition impacts behavior depends on the “bottleneck” resource. With knowledge of physics laws and underlying mechanisms, the dynamical behaviors of the synthetic circuits can be described by the first principle models, usually represented by a system of ordinary differential equations (ODEs). In this work, we develop the novel embedded PINN (ePINN), which is composed of two nested loss-sharing neural networks to target and improve the unknown dynamics prediction from quantitative time series data. We apply the ePINN approach to identify the mathematical structures of competition phenotypes. Firstly, we use the PINNs approach to infer the model parameters and hidden dynamics from partially known data (including a lack of understanding of the reaction mechanisms or missing experimental data). Secondly, we test how well the algorithms can distinguish and extract the unknown dynamics from noisy data. Thirdly, we study how the synthetic and competing circuits behave in various cases when different particles become a limited resource. |
Linear immersions (or Koopman eigenmappings) of a nonlinear system have wide applications in prediction and control. In this work, we study the existence of one-to-one linear immersions for nonlinear systems with multiple omega-limit sets. For this class of systems, existing work shows that a discontinuous one-to-one linear immersion may exist, but it is unclear if a continuous one-to-one linear immersion exists. Under mild conditions, we prove that systems with multiple omega-limit sets cannot admit a continuous one-to-one immersion to a class of systems including linear systems. |
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. We have developed design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated by re-coding a 2-bit version of the MD5 hashing algorithm, an early predecessor to the cryptographic functions underlying cryptocurrency. Implementation required 110 logic gates, which were partitioned across 65 strains of Escherichia coli, requiring the introduction of a total of 0.66 Mb of recombinant DNA into their genomes. The strains are experimentally verified to integrate their assigned input signals, process this information correctly, and propagate the result to the cell in the next layer. This work demonstrates the potential computational capacity cell populations, whether it is to obtain programmable control of biological processes or to implement highly parallelized solutions to computational problems. |
Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrate via the circulatory system and subsequently settle in distant organs after undergoing the reverse transition. The core gene regulatory network controlling these transitions consists of a system made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this work, we formulate a mathematical model and analyze its long-term behavior. We start by developing a detailed reaction network with 24 state variables. Assuming fast promoter and mRNA kinetics, we then show how to reduce our model to a monotone four-dimensional system. For the reduced system, monotone dynamical systems theory can be used to prove generic convergence to the set of equilibria for all bounded trajectories. The theory does not apply to the full model, which is not monotone, but we briefly discuss results for singularly-perturbed monotone systems that provide a tool to extend convergence results from reduced to full systems, under appropriate time separation assumptions. |
In order to control highly-contagious and prolonged outbreaks, public health authorities intervene to institute social distancing, lock-down policies, and other Non-Pharmaceutical Interventions (NPIs). Given the high social, educational, psychological, and economic costs of NPIs, authorities tune them, alternatively tightening up or relaxing rules, with the result that, in effect, a relatively flat infection rate results. For example, during the summer of 2020 in parts of the United States, daily COVID-19 infection numbers dropped to a plateau. This paper approaches NPI tuning as a control-theoretic problem, starting from a simple dynamic model for social distancing based on the classical SIR epidemics model. Using a singular-perturbation approach, the plateau becomes a Quasi-Steady-State (QSS) of a reduced two-dimensional SIR model regulated by adaptive dynamic feedback. It is shown that the QSS can be assigned and it is globally asymptotically stable. Interestingly, the dynamic model for social distancing can be interpreted as a nonlinear integral controller. Problems of data fitting and parameter identifiability are also studied for this model. This letter also discusses how this simple model allows for a meaningful study of the effect of population size, vaccinations, and the emergence of second waves. |
Internal models are nowadays customarily used in different domains of science and engineering to describe how living organisms or artificial computational units embed their acquired knowledge about recurring events taking place in the surrounding environment. This article reviews the internal model principle in control theory, bioengineering, and neuroscience, illustrating the fundamental concepts and theoretical developments of the last few decades of research. |
Recent work on data-driven control and reinforcement learning has renewed interest in a relatively old field in control theory: model-free optimal control approaches which work directly with a cost function and do not rely upon perfect knowledge of a system model. Instead, an "oracle" returns an estimate of the cost associated to, for example, a proposed linear feedback law to solve a linear-quadratic regulator problem. This estimate, and an estimate of the gradient of the cost, might be obtained by performing experiments on the physical system being controlled. This motivates in turn the analysis of steepest descent algorithms and their associated gradient differential equations. This paper studies the effect of errors in the estimation of the gradient, framed in the language of input to state stability, where the input represents a perturbation from the true gradient. Since one needs to study systems evolving on proper open subsets of Euclidean space, a self-contained review of input to state stability definitions and theorems for systems that evolve on such sets is included. The results are then applied to the study of noisy gradient systems, as well as the associated steepest descent algorithms. |
A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input, the state converges to a unique equilibrium point for any initial condition. We consider the problem of maximizing a weighted average of the system's output along the periodic attractor. The gain of entrainment is the benefit achieved by using a non-constant periodic input relative to a constant input with the same time average. Such a problem amounts to optimal allocation of resources in a periodic manner. We formulate this problem as a periodic optimal control problem, which can be analyzed by means of the Pontryagin maximum principle or solved numerically via powerful software packages. We then apply our framework to a class of nonlinear occupancy models that appear frequently in biological synthesis systems and other applications. We show that, perhaps surprisingly, constant inputs are optimal for various architectures. This suggests that the presence of non-constant periodic signals, which frequently appear in biological occupancy systems, is a signature of an underlying time-varying objective functional being optimized. |
Maintaining and limiting T cell responses to constant antigen stimulation is critical to control pathogens and maintain self-tolerance, respectively. Antigen recognition by T cell receptors (TCRs) induces signalling that activates T cells to produce cytokines and also leads to the downregulation of surface TCRs. In other systems, receptor downregulation can induce perfect adaptation to constant stimulation by a mechanism known as state-dependent inactivation that requires complete downregulation of the receptor or the ligand. However, this is not the case for the TCR, and therefore, precisely how TCR downregulation maintains or limits T cell responses is controversial. Here, we observed that in vitro expanded primary human T cells exhibit perfect adaptation in cytokine production to constant antigen stimulation across a 100,000-fold variation in affinity with partial TCR downregulation. By directly fitting a mechanistic model to the data, we show that TCR downregulation produces imperfect adaptation, but when coupled to a switch produces perfect adaptation in cytokine production. A pre diction of the model is that pMHC-induced TCR signalling continues after adaptation and this is confirmed by showing that, while costimulation cannot prevent adaptation, CD28 and 4-1BB signalling reactivated adapted T cells to produce cytokines in a pMHC-dependent manner. We show that adaptation also applied to 1st generation chimeric antigen receptor (CAR)-T cells but is partially avoided in 2nd generation CARs. These findings highlight that even partial TCR downregulation can limit T cell responses by producing perfect adaptation rendering T cells dependent on costimulation for sustained responses. |
An important goal of synthetic biology is to build biosensors and circuits with well-defined input-output relationships that operate at speeds found in natural biological systems. However, for molecular computation, most commonly used genetic circuit elements typically involve several steps from input detection to output signal production: transcription, translation, and post-translational modifications. These multiple steps together require up to several hours to respond to a single stimulus, and this limits the overall speed and complexity of genetic circuits. To address this gap, molecular frameworks that rely exclusively on post-translational steps to realize reaction networks that can process inputs at a time scale of seconds to minutes have been proposed. Here, we build mathematical models of fast biosensors capable of producing Boolean logic functionality. We employ protease-based chemical and light-induced switches, investigate their operation, and provide selection guidelines for their use as on-off switches. As a proof of concept, we implement a rapamycin-induced switch in vitro and demonstrate that its response qualitatively agrees with the predictions from our models. We then use these switches as elementary blocks, developing models for biosensors that can perform OR and XOR Boolean logic computation while using reaction conditions as tuning parameters. We use sensitivity analysis to determine the time-dependent sensitivity of the output to proteolytic and protein-protein binding reaction parameters. These fast protease-based biosensors can be used to implement complex molecular circuits with a capability of processing multiple inputs controllably and algorithmically. Our framework for evaluating and optimizing circuit performance can be applied to other molecular logic circuits. |
Motivated by the current COVID-19 epidemic, this work introduces an epidemiological model in which separate compartments are used for susceptible and asymptomatic "socially distant" populations. Distancing directives are represented by rates of flow into these compartments, as well as by a reduction in contacts that lessens disease transmission. The dynamical behavior of this system is analyzed, under various different rate control strategies, and the sensitivity of the basic reproduction number to various parameters is studied. One of the striking features of this model is the existence of a critical implementation delay in issuing separation mandates: while a delay of about four weeks does not have an appreciable effect, issuing mandates after this critical time results in a far greater incidence of infection. In other words, there is a nontrivial but tight "window of opportunity" for commencing social distancing. Different relaxation strategies are also simulated, with surprising results. Periodic relaxation policies suggest a schedule which may significantly inhibit peak infective load, but that this schedule is very sensitive to parameter values and the schedule's frequency. Further, we considered the impact of steadily reducing social distancing measures over time. We find that a too-sudden reopening of society may negate the progress achieved under initial distancing guidelines, if not carefully designed. |
One of the most important factors limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. We have recently introduced a framework for quantifying the effects of induced and non-induced resistance to cancer chemotherapy. In this work, we expound on the details relating to an optimal control problem outlined in our previous paper (Greene et al., 2018). The control structure is precisely characterized as a concatenation of bang-bang and path-constrained arcs via the Pontryagin Maximum Principle and differential Lie algebraic techniques. A structural identifiability analysis is also presented, demonstrating that patient-specific parameters may be measured and thus utilized in the design of optimal therapies prior to the commencement of therapy. For completeness, a detailed analysis of existence results is also included. |
Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions. |
We consider a nonlinear SISO system that is a cascade of a scalar "bottleneck entrance" with a stable positive linear system. In response to any periodic inflow, all solutions converge to a unique periodic solution with the same period. We study the problem of maximizing the averaged throughput via controlled switching. We compare two strategies: 1) switching between a high and low value, and 2 ~using a constant inflow equal to the prescribed mean value. We show that no possible switching policy can outperform a constant inflow rate, though it can approach it asymptotically. We describe several potential applications of this problem in traffic systems, ribosome flow models, and scheduling at security checks. |
The goal of many single-cell studies on eukaryotic cells is to gain insight into the biochemical reactions that control cell fate and state. This paper introduces the concept of effective stoichiometric space (ESS) to guide the reconstruction of biochemical networks from multiplexed, fixed time-point, single-cell data. In contrast to methods based solely on statistical models of data, the ESS method leverages the power of the geometric theory of toric varieties to begin unraveling the structure of chemical reaction networks (CRN). This application of toric theory enables a data-driven mapping of covariance relationships in single cell measurements into stoichiometric information, one in which each cell subpopulation has its associated ESS interpreted in terms of CRN theory. In the development of ESS we reframe certain aspects of the theory of CRN to better match data analysis. As an application of our approach we process cytomery- and image-based single-cell datasets and identify differences in cells treated with kinase inhibitors. Our approach is directly applicable to data acquired using readily accessible experimental methods such as Fluorescence Activated Cell Sorting (FACS) and multiplex immunofluorescence. |
This paper is a review of systems and control problems in synthetic biology, focusing on past accomplishments and open problems. It is partially a report on the workshop "The Compositionality Problem in Synthetic Biology: New Directions for Control Theory" held on June 26-27, 2017 at MIT, and organized by D. Del Vecchio, R. M. Murray, and E. D. Sontag |
The ribosomal density along the coding region of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, organismal fitness, ribosomal drop off, and co-translational protein folding. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. This paper studies this problem formulated in the context of the ribosome flow model (RFM) in which one views the transition rates between site as controls. |
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60nM-1mM), we resolved B. subtilis' ``oxygen preference conundrum'' by demonstrating consistent migration towards maximum oxygen concentrations. Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131nM-196mM). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a log-sensing strategy that affords organisms high sensitivity over a wide range of conditions. |
A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al.\ went on to provide a sufficient condition to test whether a given system has the DC property. Here, we show how DC is a reformulation of a well-known concept in systems biology, statistics, and control theory -- that of parameter structural non-identifiability. Viewing DC as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for DC. We obtain as a special case the sufficient criterion discussed by Karin et al. We also draw connections to system equivalence and to the fold-change detection property. |
This paper reports on the construction of a phosphorylation- and optically-responsive supramolecular complex of metabolic pathway enzymes for the biodegradation of an environmental pollutant. Fusing of enzymes led to an increase in pathway efficiency, and illustrates the possibility of spatio-temporal control over formation and functioning of a wide variety of synthetic biotransformations. |
Using synthetic circuits stably integrated in human kidney cells, we study the effect of negative feedback regulation on cell-wide (extrinsic) and gene-specific (intrinsic) sources of uncertainty. We develop a theoretical approach to extract the two noise components from experiments and show that negative feedback reduces extrinsic noise while marginally increasing intrinsic noise, resulting to significant total noise reduction. We compare the results to simple negative regulation, where a constitutively transcribed transcription factor represses a reporter protein. We observe that the control architecture also reduces the extrinsic noise but results in substantially higher intrinsic fluctuations. We conclude that negative feedback is the most efficient way to mitigate the effects of extrinsic fluctuations by a sole regulatory wiring. |
Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of beta-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and its impact on overall system performance once integrated. |
The problem of stabilization of equilibria is one of the central issues in control. In addition to its intrinsic interest, it represents a first step towards the solution of more complicated problems, such as the stabilization of periodic orbits or general invariant sets, or the attainment of other control objectives, such as tracking, disturbance rejection, or output feedback, all of which may be interpreted as requiring the stabilization of some quantity (typically, some sort of ``error'' signal). A very special case, when there are no inputs, is that of stability. This short and informal article provides an introduction to the subject. |
During normal kidney function, there are are routinely wide swings in proximal tubule fluid flow and proportional changes in Na+ reabsorption across tubule epithelial cells. This "glomerulotubular balance" occurs in the absence of any substantial change in cell volume, and is thus a challenge to coordinate luminal membrane solute entry with peritubular membrane solute exit. In this work, linear optimal control theory is applied to generate a configuration of regulated transporters that could achieve this result. A previously developed model of rat proximal tubule epithelium is linearized about a physiologic reference condition; the approximate linear system is recast as a dynamical system; and a Riccati equation is solved to yield optimal linear feedback that stabilizes Na+ flux, cell volume, and cell pH. This optimal feedback control is largely consigned to three physiologic variables, cell volume, cell electrical potential, and lateral intercellular hydrostatic pressure. Transport modulation by cell volume stabilizes cell volume; transport modulation by electrical potential or interspace pressure act to stabilize Na+ flux and cell pH. This feedback control is utilized in a tracking problem, in which reabsorptive Na+ flux varies over a factor of two. The resulting control parameters consist of two terms, an autonomous term and a feedback term, and both terms include transporters on both luminal and peritubular cell membranes. Overall, the increase in Na+ flux is achieved with upregulation of luminal Na+/H+ exchange and Na+-glucose cotransport, with increased peritubular Na+-3HCO_3- and K+-Cl- cotransport, and with increased Na+,K+-ATPase activity. The configuration of activated transporters emerges as testable hypothesis of the molecular basis for glomerulotubular balance. It is suggested that the autonomous control component at each cell membrane could represent the cytoskeletal effects of luminal flow. |
The problem of stabilization of equilibria is one of the central issues in control. In addition to its intrinsic interest, it represents a first step towards the solution of more complicated problems, such as the stabilization of periodic orbits or general invariant sets, or the attainment of other control objectives, such as tracking, disturbance rejection, or output feedback, all of which may be interpreted as requiring the stabilization of some quantity (typically, some sort of ``error'' signal). A very special case, when there are no inputs, is that of stability. This short and informal article provides an introduction to the subject. |
This paper provides an expository introduction to monotone and near-monotone biochemical network structures. Monotone systems respond in a predictable fashion to perturbations, and have very robust dynamical characteristics. This makes them reliable components of more complex networks, and suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone. In addition, interconnections of monotone systems may be fruitfully analyzed using tools from control theory. |
As a discrete approach to genetic regulatory networks, Boolean models provide an essential qualitative description of the structure of interactions among genes and proteins. Boolean models generally assume only two possible states (expressed or not expressed) for each gene or protein in the network as well as a high level of synchronization among the various regulatory processes. In this paper, we discuss and compare two possible methods of adapting qualitative models to incorporate the continuous-time character of regulatory networks. The first method consists of introducing asynchronous updates in the Boolean model. In the second method, we adopt the approach introduced by L. Glass to obtain a set of piecewise linear differential equations which continuously describe the states of each gene or protein in the network. We apply both methods to a particular example: a Boolean model of the segment polarity gene network of Drosophila melanogaster. We analyze the dynamics of the model, and provide a theoretical characterization of the model's gene pattern prediction as a function of the timescales of the various processes. |
This paper further develops a method, originally introduced in a paper by Angeli and Sontag, for proving global attractivity of steady states in certain classes of dynamical systems. In this aproach, one views the given system as a negative feedback loop of a monotone controlled system. An auxiliary discrete system, whose global attractivity implies that of the original system, plays a key role in the theory, which is presented in a general Banach space setting. Applications are given to delay systems, as well as to systems with multiple inputs and outputs, and the question of expressing a given system in the required negative feedback form is addressed. |
This paper shows that any globally asymptotically controllable system on any smooth manifold can be globally stabilized by a state feedback. Since discontinuous feedbacks are allowed, solutions are understood in the ``sample and hold'' sense introduced by Clarke-Ledyaev-Sontag-Subbotin (CLSS). This work generalizes the CLSS Theorem, which is the special case of our result for systems on Euclidean space. We apply our result to the input-to-state stabilization of systems on manifolds relative to actuator errors, under small observation noise. |
Biological complexity and limited quantitative measurements impose severe challenges to standard engineering methodologies for systems identification. This paper presents an approach, justified by the theory of universal inputs for distinguishability, based on replacing unmodeled dynamics by fictitious `dependent inputs'. The approach is particularly useful in validation experiments, because it allows one to fit model parameters to experimental data generated by a reference (wild-type) organism and then testing this model on data generated by a variation (mutant), so long as the mutations only affect the unmodeled dynamics that produce the dependent inputs. As a case study, this paper addresses the pathways that control the nitrogen uptake fluxes in baker's yeast Saccharomyces cerevisiae enabling it to optimally respond to changes in nitrogen availability. Well-defined perturbation experiments were performed on cells growing in steady-state. Time-series data of extracellular and intracellular metabolites were obtained, as well as mRNA levels. A nonlinear model was proposed, and shown to be structurally identifiable given input/output data. The identified model correctly predicted the responses of different yeast strains and different perturbations. |
This paper proposes several definitions of observability for nonlinear systems and explores relationships among them. These observability properties involve the existence of a bound on the norm of the state in terms of the norms of the output and the input on some time interval. A Lyapunov-like sufficient condition for observability is also obtained. As an application, we prove several variants of LaSalle's stability theorem for switched nonlinear systems. These results are demonstrated to be useful for control design in the presence of switching as well as for developing stability results of Popov type for switched feedback systems. |
This paper provides representations of switched systems described by controlled differential inclusions, in terms of perturbed control systems. The control systems have dynamics given by differential equations, and their inputs consist of the original controls together with disturbances that evolve in compact sets; their sets of maximal trajectories contain, as a dense subset, the set of maximal trajectories of the original system. Several applications to control theory, dealing with properties of stability with respect to inputs and of detectability, are derived as a consequence of the representation theorem. |
This paper, prepared for a tutorial at the 2005 IEEE Conference on Decision and Control, presents an introduction to molecular systems biology and some associated problems in control theory. It provides an introduction to basic biological concepts, describes several questions in dynamics and control that arise in the field, and argues that new theoretical problems arise naturally in this context. A final section focuses on the combined use of graph-theoretic, qualitative knowledge about monotone building-blocks and steady-state step responses for components. |
This paper deals with an almost global attractivity result for Lotka-Volterra systems with predator-prey interactions. These systems can be written as (negative) feedback systems. The subsystems of the feedback loop are monotone control systems, possessing particular input-output properties. We use a small-gain theorem, adapted to a context of systems with multiple equilibrium points to obtain the desired almost global attractivity result. It provides sufficient conditions to rule out oscillatory or more complicated behavior which is often observed in predator-prey systems. |
One of the key ideas in control theory is that of viewing a complex dynamical system as an interconnection of simpler subsystems, thus deriving conclusions regarding the complete system from properties of its building blocks. Following this paradigm, and motivated by questions in molecular biology modeling, the authors have recently developed an approach based on components which are monotone systems with respect to partial orders in state and signal spaces. This paper presents a brief exposition of recent results, with an emphasis on small gain theorems for negative feedback, and the emergence of multi-stability and associated hysteresis effects under positive feedback. |
We discuss several issues related to the stabilizability of nonlinear systems. First, for continuously stabilizable systems, we review constructions of feedbacks that render the system input-to-state stable with respect to actuator errors. Then, we discuss a recent paper which provides a new feedback design that makes globally asymptotically controllable systems input-to-state stable to actuator errors and small observation noise. We illustrate our constructions using the nonholonomic integrator, and discuss a related feedback design for systems with disturbances. |
The stability of differential inclusions defined by locally Lipschitz compact valued maps is addressed. It is shown that if such a differential inclusion is globally asymptotically stable, then in fact it is uniformly globally asymptotically stable (with respect to initial states in compacts). This statement is trivial for differential equations, but here we provide the extension to compact (not necessarily convex) valued differential inclusions. The main result is presented in a context which is useful for control-theoretic applications: a differential inclusion with two outputs is considered, and the result applies to the property of global error detectability. |
A small-gain theorem is presented for almost global stability of monotone control systems which are open-loop almost globally stable, when constant inputs are applied. The theorem assumes "negative feedback" interconnections. This typically destroys the monotonicity of the original flow and potentially destabilizes the resulting closed-loop system. |
This paper takes a computational learning theory approach to a problem of linear systems identification. It is assumed that input signals have only a finite number k of frequency components, and systems to be identified have dimension no greater than n. The main result establishes that the sample complexity needed for identification scales polynomially with n and logarithmically with k. |
The main problem addressed in this paper is the design of feedbacks for globally asymptotically controllable (GAC) control affine systems that render the closed loop systems input to state stable with respect to actuator errors. Extensions for fully nonlinear GAC systems with actuator errors are also discussed. Our controllers have the property that they tolerate small observation noise as well. |
This paper, addressed primarily to engineers and mathematicians with an interest in control theory, argues that entirely new theoretical problems arise naturally when addressing questions in the field of systems biology. Examples from the author's recent work are used to illustrate this point. |
Monotone systems constitute one of the most important classes of dynamical systems used in mathematical biology modeling. The objective of this paper is to extend the notion of monotonicity to systems with inputs and outputs, a necessary first step in trying to understand interconnections, especially including feedback loops, built up out of monotone components. Basic definitions and theorems are provided, as well as an application to the study of a model of one of the cell's most important subsystems. |
This paper addresses the time-optimal control problem for a class of control systems which includes controlled mechanical systems with possible dissipation terms. The Lie algebras associated with such mechanical systems enjoy certain special properties. These properties are explored and are used in conjunction with the Pontryagin maximum principle to determine the structure of singular extremals and, in particular, time-optimal trajectories. The theory is illustrated with an application to a time-optimal problem for a class of underwater vehicles. |
Some biological systems operate at the critical point between stability and instability and this requires a fine-tuning of parameters. We bring together two examples from the literature that illustrate this: neural integration in the nervous system and hair cell oscillations in the auditory system. In both examples the question arises as to how the required fine-tuning may be achieved and maintained in a robust and reliable way. We study this question using tools from nonlinear and adaptive control theory. We illustrate our approach on a simple model which captures some of the essential features of neural integration. As a result, we propose a large class of feedback adaptation rules that may be responsible for the experimentally observed robustness of neural integration. We mention extensions of our approach to the case of hair cell oscillations in the ear. |
This paper studies a feedback regulation problem that arises in at least two different biological applications. The feedback regulation problem under consideration may be interpreted as an adaptive control problem for tuning bifurcation parameters, and it has not been studied in the control literature. The goal of the paper is to formulate this problem and to present some preliminary results. |
Suppose that an equilibrium is asymptotically stable when external inputs vanish. Then, every bounded trajectory which corresponds to a control which approaches zero and which lies in the domain of attraction of the unforced system, must also converge to the equilibrium. This "well-known" but hard-to-cite fact is proved and slightly generalized here. |
This note provides a simple result showing, under suitable technical assumptions, that if a system S adapts to a class of external signals U, then S must necessarily contain a subsystem which is capable of generating all the signals in U. It is not assumed that regulation is robust, nor is there a prior requirement for the system to be partitioned into separate plant and controller components. Instead, a "signal detection" capability is imposed. These weaker assumptions make the result better applicable to cellular phenomena such as the adaptation of E-coli chemotactic tumbling rate to constant concentrations. |
We consider a new Lyapunov-type characterization of detectability for nonlinear systems without controls, in terms of lower-semicontinuous (not necessarily smooth, or even continuous) dissipation functions, and prove its equivalence to the GASMO (global asymptotic stability modulo outputs) and UOSS (uniform output-to-state stability) properties studied in previous work. The result is then extended to provide a construction of a discontinuous dissipation function characterization of the IOSS (input-to-state stability) property for systems with controls. This paper complements a recent result on smooth Lyapunov characterizations of IOSS. The utility of non-smooth Lyapunov characterizations is illustrated by application to a well-known transistor network example. |
This paper introduces and studies a new definition of the minimum-phase property for general smooth nonlinear control systems. The definition does not rely on a particular choice of coordinates in which the system takes a normal form or on the computation of zero dynamics. In the spirit of the ``input-to-state stability'' philosophy, it requires the state and the input of the system to be bounded by a suitable function of the output and derivatives of the output, modulo a decaying term depending on initial conditions. The class of minimum-phase systems thus defined includes all affine systems in global normal form whose internal dynamics are input-to-state stable and also all left-invertible linear systems whose transmission zeros have negative real parts. As an application, we explain how the new concept enables one to develop a natural extension to nonlinear systems of a basic result from linear adaptive control. |
We study nonlinear systems with both control and disturbance inputs. The main problem addressed in the paper is design of state feedback control laws that render the closed-loop system integral-input-to-state stable (iISS) with respect to the disturbances. We introduce an appropriate concept of control Lyapunov function (iISS-CLF), whose existence leads to an explicit construction of such a control law. The same method applies to the problem of input-to-state stabilization. Converse results and techniques for generating iISS-CLFs are also discussed. |
errata for Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction |
(This is an expository paper prepared for a plenary talk given at the Second Nonlinear Control Network Workshop, Paris, June 9, 2000.) The input to state stability (ISS) paradigm is motivated as a generalization of classical linear systems concepts under coordinate changes. A summary is provided of the main theoretical results concerning ISS and related notions of input/output stability and detectability. A bibliography is also included, listing extensions, applications, and other current work. |
The area of hybrid systems concerns issues of modeling, computation, and control for systems which combine discrete and continuous components. The subclass of piecewise linear (PL) systems provides one systematic approach to discrete-time hybrid systems, naturally blending switching mechanisms with classical linear components. PL systems model arbitrary interconnections of finite automata and linear systems. Tools from automata theory, logic, and related areas of computer science and finite mathematics are used in the study of PL systems, in conjunction with linear algebra techniques, all in the context of a "PL algebra" formalism. PL systems are of interest as controllers as well as identification models. Basic questions for any class of systems are those of equivalence, and, in particular, if state spaces are equivalent under a change of variables. This paper studies this state-space equivalence problem for PL systems. The problem was known to be decidable, but its computational complexity was potentially exponential; here it is shown to be solvable in polynomial-time. |
This note provides explicit algebraic stabilizing formulas for clf's when controls are restricted to certain Minkowski balls in Euclidean space. Feedbacks of this kind are known to exist by a theorem of Artstein, but the proof of Artstein's theorem is nonconstructive. The formulas are obtained from a general feedback stabilization technique and are used to construct approximation solutions to some stabilization problems. |
This paper deals with the regularity of solutions of the Hamilton-Jacobi Inequality which arises in H-infinity control. It shows by explicit counterexamples that there are gaps between existence of continuous and locally Lipschitz (positive definite and proper) solutions, and between Lipschitz and continuously differentiable ones. On the other hand, it is shown that it is always possible to smooth-out solutions, provided that an infinitesimal increase in gain is allowed. |
In this expository paper, we deal with several questions related to stability and stabilization of nonlinear finite-dimensional continuous-time systems. We review the basic problem of feedback stabilization, placing an emphasis upon relatively new areas of research which concern stability with respect to "noise" (such as errors introduced by actuators or sensors). The table of contents is as follows: Review of Stability and Asymptotic Controllability, The Problem of Stabilization, Obstructions to Continuous Stabilization, Control-Lyapunov Functions and Artstein's Theorem, Discontinuous Feedback, Nonsmooth CLF's, Insensitivity to Small Measurement and Actuator Errors, Effect of Large Disturbances: Input-to-State Stability, Comments on Notions Related to ISS. |
This paper shows that, for time varying systems, global asymptotic controllability to a given closed subset of the state space is equivalent to the existence of a continuous control-Lyapunov function with respect to the set. |
One of the fundamental facts in control theory (Artstein's theorem) is the equivalence, for systems affine in controls, between continuous feedback stabilizability to an equilibrium and the existence of smooth control Lyapunov functions. This equivalence breaks down for general nonlinear systems, not affine in controls. One of the main results in this paper establishes that the existence of smooth Lyapunov functions implies the existence of (in general, discontinuous) feedback stabilizers which are insensitive to small errors in state measurements. Conversely, it is shown that the existence of such stabilizers in turn implies the existence of smooth control Lyapunov functions. Moreover, it is established that, for general nonlinear control systems under persistently acting disturbances, the existence of smooth Lyapunov functions is equivalent to the existence of (possibly) discontinuous) feedback stabilizers which are robust with respect to small measurement errors and small additive external disturbances. |
This paper provides a precise result which shows that insensitivity to small measurement errors in closed-loop stabilization can be attained provided that the feedback controller ignores observations during small time intervals. |
This paper studies controllability properties of recurrent neural networks. The new contributions are: (1) an extension of the result in "Complete controllability of continuous-time recurrent neural networks" to a slightly different model, where inputs appear in an affine form, (2) a formulation and proof of a necessary and sufficient condition, in terms of local-local controllability, and (3) a complete analysis of the 2-dimensional case for which the hypotheses made in previous work do not apply. |
This paper proposes a generally applicable technique for the control of analytic systems with no drift. The method is based on the generation of "nonsingular loops" that allow linearized controllability. One can then implement Newton and/or gradient searches in the search for a control. A general convergence theorem is proved. |
This paper considers the problem of stabilization of linear systems for which only the magnitudes of outputs are measured. It is shown that, if a system is controllable and observable, then one can find a stabilizing controller, which is robust with respect to observation noise (in the ISS sense). |
For analytic discrete-time systems, it is shown that uniform forward accessibility implies the generic existence of universal nonsingular control sequences. A particular application is given by considering forward accessible systems on compact manifolds. For general systems, it is proved that the complement of the set of universal sequences of infinite length is of the first category. For classes of systems satisfying a descending chain condition, and in particular for systems defined by polynomial dynamics, forward accessibility implies uniform forward accessibility. |
This paper provides an exposition of some recent results regarding system-theoretic aspects of continuous-time recurrent (dynamic) neural networks with sigmoidal activation functions. The class of systems is introduced and discussed, and a result is cited regarding their universal approximation properties. Known characterizations of controllability, observability, and parameter identifiability are reviewed, as well as a result on minimality. Facts regarding the computational power of recurrent nets are also mentioned. |
It is shown that every asymptotically controllable system can be stabilized by means of some (discontinuous) feedback law. One of the contributions of the paper is in defining precisely the meaning of stabilization when the feedback rule is not continuous. The main ingredients in our construction are: (a) the notion of control-Lyapunov function, (b) methods of nonsmooth analysis, and (c) techniques from positional differential games. |
This paper presents a characterization of controllability for the class of control systems commonly called (continuous-time) recurrent neural networks. The characterization involves a simple condition on the input matrix, and is proved when the activation function is the hyperbolic tangent. |
This paper deals with the problem of global stabilization of linear discrete time systems by means of bounded feedback laws. The main result proved is an analog of one proved for the continuous time case by the authors, and shows that such stabilization is possible if and only if the system is stabilizable with arbitrary controls and the transition matrix has spectral radius less or equal to one. The proof provides in principle an algorithm for the construction of such feedback laws, which can be implemented either as cascades or as parallel connections (``single hidden layer neural networks'') of simple saturation functions. |
Shorter and more expository version of "Nonsmooth control-Lyapunov functions" |
This paper presents a Converse Lyapunov Function Theorem motivated by robust control analysis and design. Our result is based upon, but generalizes, various aspects of well-known classical theorems. In a unified and natural manner, it (1) allows arbitrary bounded time-varying parameters in the system description, (2) deals with global asymptotic stability, (3) results in smooth (infinitely differentiable) Lyapunov functions, and (4) applies to stability with respect to not necessarily compact invariant sets. |
This paper deals with (global) finite-gain input/output stabilization of linear systems with saturated controls. For neutrally stable systems, it is shown that the linear feedback law suggested by the passivity approach indeed provides stability, with respect to every Lp-norm. Explicit bounds on closed-loop gains are obtained, and they are related to the norms for the respective systems without saturation. These results do not extend to the class of systems for which the state matrix has eigenvalues on the imaginary axis with nonsimple (size >1) Jordan blocks, contradicting what may be expected from the fact that such systems are globally asymptotically stabilizable in the state-space sense; this is shown in particular for the double integrator. |
We deal with the question of obtaining explicit feedback control laws that stabilize a nonlinear system, under the assumption that a "control Lyapunov function" is known. In previous work, the case of unbounded controls was considered. Here we obtain results for bounded and/or positive controls. We also provide some simple preliminary remarks regarding a set stability version of the problem and a version for systems subject to disturbances. |
This paper studies various stability issues for parameterized families of systems, including problems of stabilization with respect to sets. The study of such families is motivated by robust control applications. A Lyapunov-theoretic necessary and sufficient characterization is obtained for a natural notion of robust uniform set stability; this characterization allows replacing ad hoc conditions found in the literature by more conceptual stability notions. We then use these techniques to establish a result linking state space stability to ``input to state'' (bounded-input bounded-state) stability. In addition, the preservation of stabilizability under certain types of cascade interconnections is analyzed. |
This paper proposes a simple numerical technique for the steering of arbitrary analytic systems with no drift. It is based on the generation of "nonsingular loops" which allow linearized controllability along suitable trajetories. Once such loops are available, it is possible to employ standard Newton or steepest descent methods, as classically done in numerical control. The theoretical justification of the approach relies on recent results establishing the genericity of nonsingular controls, as well as a simple convergence lemma. |
The "input to state stability" (ISS) property provides a natural framework in which to formulate notions of stability with respect to input perturbations. In this expository paper, we review various equivalent definitions expressed in stability, Lyapunov-theoretic, and dissipation terms. We sketch some applications to the stabilization of cascades of systems and of linear systems subject to control saturation. |
This paper deals with the orders of input/output equations satisfied by nonlinear systems. Such equations represent differential (or difference, in the discrete-time case) relations between high-order derivatives (or shifts, respectively) of input and output signals. It is shown that, under analyticity assumptions, there cannot exist equations of order less than the minimal dimension of any observable realization; this generalizes the known situation in the classical linear case. The results depend on new facts, themselves of considerable interest in control theory, regarding universal inputs for observability in the discrete case, and observation spaces in both the discrete and continuous cases. Included in the paper is also a new and simple self-contained proof of Sussmann's universal input theorem for continuous-time analytic systems. |
Controllability questions for discrete-time nonlinear systems are addressed in this paper. In particular, we continue the search for conditions under which the group-like notion of transitivity implies the stronger and semigroup-like property of forward accessibility. We show that this implication holds, pointwise, for states which have a weak Poisson stability property, and globally, if there exists a global "attractor" for the system. |
We present two constructions of controllers that globally stabilize linear systems subject to control saturation. We allow essentially arbitrary saturation functions. The only conditions imposed on the system are the obvious necessary ones, namely that no eigenvalues of the uncontrolled system have positive real part and that the standard stabilizability rank condition hold. One of the constructions is in terms of a "neural-network type" one-hidden layer architecture, while the other one is in terms of cascades of linear maps and saturations. |
This paper has an expository introduction to two related topics: (a) Some mathematical results regarding "neural networks", and (b) so-called "neurocontrol" and "learning control" (each part can be read independently of the other). It was prepared for a short course given at the 1993 European Control Conference. |
A basic open question for discrete-time nonlinear systems is that of determining when, in analogy with the classical continuous-time "positive form of Chow's Lemma", accessibility follows from transitivity of a natural group action. This paper studies the problem, and establishes the desired implication for analytic systems in several cases: (i) compact state space, (ii) under a Poisson stability condition, and (iii) in a generic sense. In addition, the paper studies accessibility properties of the "control sets" recently introduced in the context of dynamical systems studies. Finally, various examples and counterexamples are provided relating the various Lie algebras introduced in past work. |
This paper compares the representational capabilities of one hidden layer and two hidden layer nets consisting of feedforward interconnections of linear threshold units. It is remarked that for certain problems two hidden layers are required, contrary to what might be in principle expected from the known approximation theorems. The differences are not based on numerical accuracy or number of units needed, nor on capabilities for feature extraction, but rather on a much more basic classification into "direct" and "inverse" problems. The former correspond to the approximation of continuous functions, while the latter are concerned with approximating one-sided inverses of continuous functions - and are often encountered in the context of inverse kinematics determination or in control questions. A general result is given showing that nonlinear control systems can be stabilized using two hidden layers, but not in general using just one. |
For analytic systems satisfying the strong accessibility rank condition, generic inputs produce trajectories along which the linearized system is controllable. Applications to the steering of systems without drift are briefly mentioned. |
It is shown that realizability of an input/output operators by a finite-dimensional continuous-time rational control system is equivalent to the existence of a high-order algebraic differential equation satisfied by the corresponding input/output pairs ("behavior"). This generalizes, to nonlinear systems, the classical equivalence between autoregressive representations and finite dimensional linear realizability. |
This paper studies fundamental analytic properties of generating series for nonlinear control systems, and of the operators they define. It then applies the results obtained to the extension of facts, which relate realizability and algebraic input/output equations, to local realizability and analytic equations. |
This paper surveys recent work by the author on learning and representational capabilities of feedforward nets. The learning results show that, among two possible variants of the so-called backpropagation training method for sigmoidal nets, both of which variants are used in practice, one is a better generalization of the older perceptron training algorithm than the other. The representation results show that nets consisting of sigmoidal neurons have at least twice the representational capabilities of nets that use classical threshold neurons, at least when this increase is quantified in terms of classification power. On the other hand, threshold nets are shown to be more useful when approximating implicit functions, as illustrated with an application to a typical control problem. |
This conference paper reviews various results relating state-space (Lyapunov) stabilization and exponential stabilization to several notions of input/output or bounded-input bounded-output stabilization. It also provides generalizations of some of these results to systems with saturating controls. Some of these latter results were not included in journal papers. |
The notion of controllability was identified by Kalman as one of the central properties determining system behavior. His simple rank condition is ubiquitous in linear systems analysis. This article presents an elementary and expository overview of the generalizations of this test to a condition for testing accessibility of discrete and continuous time nonlinear systems. |
We provide a formula for a stabilizing feedback law using a bounded control, under the assumption that an appropriate control-Lyapunov function is known. Such a feedback, smooth away from the origin and continuous everywhere, is known to exist via Artstein's Theorem. As in the unbounded-control case treated in a previous note, we provide an explicit and ``universal'' formula given by an algebraic function of Lie derivatives. In particular, we extend to the bounded case the result that the feedback can be chosen analytic if the Lyapunov function and the vector fields defining the system are analytic. |
Results are given on the integrability of certain distributions which arise from smoothly parametrized families of diffeomorphisms acting on manifolds. Applications to control problems and in particular to the problem of sampling are discussed. Pages 42-50 apply the results to the control of continuous time systems; this is an exposition of some of the basic results of the Lie algebraic accessibility theory. |
This paper presents a geometric study of controllability for discrete-time nonlinear systems. Various accessibility properties are characterized in terms of Lie algebras of vector fields. Some of the results obtained are parallel to analogous ones in continuous-time, but in many respects the theory is substantially different and many new phenomena appear. |
Previous results about input to state stabilizability are shown to hold even for systems which are not linear in controls, provided that a more general type of feedback be allowed. Applications to certain stabilization problems and coprime factorizations, as well as comparisons to other results on input to state stability, are also briefly discussed.d local minima may occur, if the data are not separable and sigmoids are used. |
We prove that for any family of n-dimensional controllable linear systems, continuously parameterized by up to three parameters, and for any continuous selection of n eigenvalues (in complex conjugate pairs), there is some dynamic controller of dimension 3n which is itself continuously parameterized and for which the closed-loop eigenvalues are these same eigenvalues, each counted 4 times. An analogous result holds also for smooth parameterizations. |
This note presents an explicit proof of the theorem - due to Artstein - which states that the existence of a smooth control-Lyapunov function implies smooth stabilizability. Moreover, the result is extended to the real-analytic and rational cases as well. The proof uses a "universal" formula given by an algebraic function of Lie derivatives; this formula originates in the solution of a simple Riccati equation. |
This paper shows that coprime right factorizations exist for the input to state mapping of a continuous time nonlinear system provided that the smooth feedback stabilization problem be solvable for this system. In particular, it follows that feedback linearizable systems admit such factorizations. In order to establish the result a Lyapunov-theoretic definition is proposed for bounded input bounded output stability. The main technical fact proved relates the notion of stabilizability studied in the state space nonlinear control literature to a notion of stability under bounded control perturbations analogous to those studied in operator theoretic approaches to systems; it states that smooth stabilization implies smooth input-to-state stabilization. (Note: This is the original ISS paper, but the ISS results have been much improved in later papers. The material on coprime factorizations is still of interest, but the 89 CDC paper has some improvements and should be read too.) |
We prove that the angular velocity equations can be smoothly stabilized with a single torque controller for bodies having an axis of symmetry. This complements a recent result of Aeyels and Szafranski. |
This note establishes a result linking algebraically coprime factorizations of transfer matrices of delay systems to approximately coprime factorizations in the sense of distributions. The latter have been employed by the second author in the study of function-space controllability for such systems. |
This paper establishes the equality of the observation spaces defined by means of piecewise constant controls with those defined in terms of differentiable controls. |
This paper studies accessibility (weak controllability) of bilinear systems under constant sampling rates. It is shown that the property is preserved provided that the sampling period satisfies a condition related to the eigenvalues of the autonomous dynamics matrix. This condition generalizes the classical Kalman-Ho-Narendra criterion which is well known in the linear case, and which, for observability, results in the classical Nyquist theorem. |
This paper provides further results about the equilinearization method of control design recently introduced by the author. A simplified derivation of the controller is provided, as well as a theorem on local stabilization along reference trajectories. |
For continuous time analytic input/output maps, the existence of a singular differential equation relating derivatives of controls and outputs is shown to be equivalent to bilinear realizability. A similar result holds for the problem of immersion into bilinear systems. The proof is very analogous to that of the corresponding, and previously known, result for discrete time. |
The present article compares the difficulties of deciding controllability and accessibility. These are standard properties of control systems, but complete algebraic characterizations of controllability have proved elusive. We show in particular that for subsystems of bilinear systems, accessibility can be decided in polynomial time, but controllability is NP-hard. |
This paper concerns itself with the existence of open-loop control generators for nonlinear (continuous-time) systems. The main result is that, under relatively mild assumptions on the original system, and for each fixed compact subset of the state space, there always exists one such generator. This is a new system with the property that the controls it produces are sufficiently rich to preserve complete controllability along nonsingular trajectories. General results are also given on the continuity and differentiability of the input to state mapping for various p-norms on controls, as well as a comparison of various nonlinear controllability notions. |
A nonlinear controllable plant, under mild technical conditions, admits a precompensator with the following property: along control trajectories joining pairs of states, the composite system (precompensator plus plant) is, up to first order, isomorphic to a parallel connection of integrators. |
Weak controllability of bilinear systems is preserved under sampling provided that the sampling period satisfies a condition related to the eigenvalues of the autonomous dynamics matrix. This condition generalizes the classical Kalman-Ho-Narendra criterion which is well known in the linear case. |
We present various comments on a question about systems over rings posed in a recent note by Sharma, proving that a ring R is pole-assignable if and only if, for every reachable system (F,G), G contains a rank-one summand of the state space. We also provide a generalization to deal with dynamic feedback. |
A controller is shown to exist, universal for the family of all systems of fixed dimension n, and m controls, which stabilizes those systems that are stabilizable, if certain gains are large enough. The controller parameters are continuous, in fact polynomial, functions of the entries of the plant. As a consequence, a result is proved on polynomial stabilization of families of systems. |
This paper provides an introduction to definitions and known facts relating to the stabilization of parametrized families of linear systems using static and dynamic controllers. New results are given in the rational and polynomial cases. |
We continue here our investigation into the preservation of structural properties under the sampling of nonlinear systems. The main new result is that, under minimal hypothesis, a controllable system always satisfies a strong type of approximate sampled controllability. |
In this note we present an algebraic approach to the proof that a linear system with matrices (A,B) is null-controllable using bounded inputs iff it is null-controllable (with unbounded inputs) and all eigenvalues of A have nonpositive real parts (continuous time) or magnitude not greater than one (discrete time). We also give the analogous results for the asymptotic case. Finally, we give an interpretation of these results in the context of local nonlinear controllability. |
A polynomially parametrized family of continuous-time controllable linear systems is always stabilizable by polynomially parametrized feedback. (Note: appendix had a MACSYMA computation. I cannot find the source file for that. Please look at journal if interested, but this is not very important. Also, two figures involving root loci are not in the web version.) |
This note studies the preservation of controllability (and other properties) under sampling of a nonlinear system. More detailed results are obtained in the cases of analytic systems and of systems with finite dimensional Lie algebras. |
Given a continuous-time family of finite dimensional single input linear systems, parametrized polynomially, such that each of the systems in the family is controllable, there exists a polynomially parametrized control law making each of the systems in the family stable. |
It is shown that a control system in Rn is asymptotically controllable to the origin if and only if there exists a positive definite continuous functional of the states whose derivative can be made negative by appropriate choices of controls. |
This paper was a conference version of the SIAM paper that introduced the idea of control-Lyapunov functions for arbitrary nonlinear systems. (The journal paper was submitted in 1981 but only published in 1983.) |
Problems that appear in trying to extend linear control results to systems over rings R have attracted considerable attention lately. This interest has been due mainly to applications-oriented motivations (in particular, dealing with delay-differential equations), and partly to a purely algebraic interest. Given a square n-matrix F and an n-row matrix G. pole-shifting problems consist in obtaining more or less arbitrary characteristic polynomials for F+GK, for suitable ("feedback") matrices K. A review of known facts is given, various partial results are proved, and the case n=2 is studied in some detail. |
A paper that introduces a separation principle for general finite dimensional analytic continuous-time systems, proving the equivalence between existence of an output regulator (which is an abstract dynamical system) and certain "0-detectability" and asymptotic controllability assumptions. |
Development of an approach to nonlinear control based on mixtures of linear systems and finite automata. File obtained by scanning. |
This paper proposes an approach to the problem of establishing the existence of observers for deterministic dynamical systems. This approach differs from the standard one based on Luenberger observers in that the observation error is not required to be Markovian given the past input and output data. A general abstract result is given, which special- izes to new results for parametrized families of linear systems, delay systems and other classes of systems. Related problems of feedback control and regulation are also studied. |
An abstract operator approach is introduced, permitting a unified study of discrete- and continuous-time linear control systems. As an application, an algorithm is given for deciding if a linear system can be built from any fixed set of linear components. Finally, a criterion is given for reachability of the abstract systems introduced, giving thus a unified proof of known reachability results for discrete-time, continuous-time, and delay-differential systems. |
An elementary presentation is given of some of the main motivations and known results on linear systems over rings, including questions of realization and control. The analogies and differences with the more standard case of systems over fields are emphasized throughout. |
This paper studies some problems appearing in the extension of the theory of linear dynamical systems to the case in which parameters are taken from noncommutative rings. Purely algebraic statements of some of the problems are also obtained. Through systems defined by operator rings, the theory of linear systems over rings may be applied to other areas of automata and control theory; several such applications are outlined. |
Conference articles |
Numerical ``direct'' approaches to time-optimal control often fail to find solutions that are singular in the sense of the Pontryagin Maximum Principle. These approaches behave better when searching for saturated (bang-bang) solutions. In previous work by one of the authors, singular solutions were theoretically shown to exist for the time-optimal problem for two-link manipulators under hard torque constraints. The theoretical results gave explicit formulas, based on Lie theory, for singular segments of trajectories, but the global structure of solutions remains unknown. In this work, we show how to effectively combine these theoretically found formulas with the use of general-purpose optimal control softwares. By using the explicit formula given by theory in the intervals where the numerical solution enters a singular arcs, we not only obtain an algebraic expression for the control in that interval, but we are also able to remove artifacts present in the numerical solution. In this way, the best features of numerical algorithms and theory complement each other and provide a better picture of the global optimal structure. We showcase the technique on a 2 degrees of freedom robotic arm example, and also propose a way of extending the analyzed method to robotic arms with higher degrees of freedom through partial feedback linearization, assuming the desired task can be mostly performed by a few of the degrees of freedom of the robot and imposing some prespecified trajectory on the remaining joints. |
Due to the usage of social distancing as a means to control the spread of the novel coronavirus disease COVID-19, there has been a large amount of research into the dynamics of epidemiological models with time-varying transmission rates. Such studies attempt to capture population responses to differing levels of social distancing, and are used for designing policies which both inhibit disease spread but also allow for limited economic activity. One common criterion utilized for the recent pandemic is the peak of the infected population, a measure of the strain placed upon the health care system; protocols which reduce this peak are commonly said to "flatten the curve". In this work, we consider a very specialized distancing mandate, which consists of one period of fixed length of distancing, and addresses the question of optimal initiation time. We prove rigorously that this time is characterized by an equal peaks phenomenon: the optimal protocol will experience a rebound in the infected peak after distancing is relaxed, which is equal in size to the peak when distancing is commenced. In the case of a non-perfect lockdown (i.e. disease transmission is not completely suppressed), explicit formulas for the initiation time cannot be computed, but implicit relations are provided which can be pre-computed given the current state of the epidemic. Expected extensions to more general distancing policies are also hypothesized, which suggest designs for the optimal timing of non-overlapping lockdowns. |
Systems theory can play an important in unveiling fundamental limitations of learning algorithms and architectures when used to control a dynamical system, and in suggesting strategies for overcoming these limitations. As an example, a feedforward neural network cannot stabilize a double integrator using output feedback. Similarly, a recurrent NN with differentiable activation functions that stabilizes a non-strongly stabilizable system must be itself open loop unstable, a fact that has profound implications for training with noisy, finite data. A potential solution to this problem, motivated by results on stabilization with periodic control, is the use of neural nets with periodic resets, showing that indeed systems theoretic analysis is instrumental in developing architectures capable of controlling certain classes of unstable systems. This short conference paper also argues that when the goal is to learn control oriented models, the loss function should reflect closed loop, rather than open loop model performance, a fact that can be accomplished by using gap-metric motivated loss functions. |
Conference version of paper published in IEEE Control Systems Letters, 2020 |
Integral feedback can help achieve robust tracking independently of external disturbances. Motivated by this knowledge, biological engineers have proposed various designs of biomolecular integral feedback controllers to regulate biological processes. In this paper, we theoretically analyze the operation of a particular synthetic biomolecular integral controller, which we have recently proposed and implemented experimentally. Using a combination of methods, ranging from linearized analysis to sum-of-squares (SOS) Lyapunov functions, we demonstrate that, when the controller is operated in closed-loop, it is capable of providing integral corrections to the concentration of an output species in such a manner that the output tracks a reference signal linearly over a large dynamic range. We investigate the output dependency on the reaction parameters through sensitivity analysis, and quantify performance using control theory metrics to characterize response properties, thus providing clear selection guidelines for practical applications. We then demonstrate the stable operation of the closed-loop control system by constructing quartic Lyapunov functions using SOS optimization techniques, and establish global stability for a unique equilibrium. Our analysis suggests that by incorporating effective molecular sequestration, a biomolecular closed-loop integral controller that is capable of robustly regulating gene expression is feasible. |
Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model. |
In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining different cell types. We study here the "PU.1/GATA-1 circuit" that controls the development of mature blood cells from hematopoietic stem cells (HSCs). We introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge and find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others. |
This is a tutorial paper on control-theoretic methods for the analysis of biological systems. |
The primary factor limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. This work extends the work reported in "A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment" by introducing a time-optimal control problem that is analyzed utilizing differential-geometric techniques: we seek a treatment protocol which maximizes the time of treatment until a critical tumor size is reached. The general optimal control structure is determined as a combination of both bang-bang and path-constrained arcs. Numerical results are presented which demonstrate decreasing treatment efficacy as a function of the ability of the drug to induce resistance. Thus, drug-induced resistance may dramatically effect the outcome of chemotherapy, implying that factors besides cytotoxicity should be considered when designing treatment regimens. |
This tutorial paper deals with the Internal Model Principle (IMP) from different perspectives. The goal is to start from the principle as introduced and commonly used in the control theory and then enlarge the vision to other fields where "internal models" play a role. The biology and neuroscience fields are specifically targeted in the paper. The paper ends by presenting an "abstract" theory of IMP applicable to a large class of systems. |
Combining in-vivo experiments with system identification methods, we determine a simple model of aerotaxis in B. subtilis, and we subsequently employ this model in order to compute the sequence of oxygen gradients needed in order to achieve set-point regulation with respect to a signal tracking the center of mass of the bacterial population. We then successfully validate both the model and the control scheme, by showing that in-vivo positioning control can be achieved via the application of the precomputed inputs in-vivo in an open-loop configuration. |
This tutorial paper presents an introduction to systems and synthetic molecular biology. It provides an introduction to basic biological concepts, and describes some of the techniques as well as challenges in the analysis and design of biomolecular networks. |
This paper continues the investigation of the recently introduced integral version of input-to-state stability (iISS). We study the problem of designing control laws that achieve iISS disturbance attenuation. The main contribution is an appropriate concept of control Lyapunov function (iISS-CLF), whose existence leads to an explicit construction of such a control law. The results are compared and contrasted with the ones available for the ISS case. |
We showned in another recent paper that any asymptotically controllable system can be stabilized by means of a certain type of discontinuous feedback. The feedback laws constructed in that work are robust with respect to actuator errors as well as to perturbations of the system dynamics. A drawback, however, is that they may be highly sensitive to errors in the measurement of the state vector. This paper addresses this shortcoming, and shows how to design a dynamic hybrid stabilizing controller which, while preserving robustness to external perturbations and actuator error, is also robust with respect to measurement error. This new design relies upon a controller which incorporates an internal model of the system driven by the previously constructed feedback. |
We suggest that a very natural mathematical framework for the study of dissipation -in the sense of Willems, Moylan and Hill, and others- is that of indefinite quasimetric spaces. Several basic facts about dissipative systems are seen to be simple consequences of the properties of such spaces. Quasimetric spaces provide also one natural context for optimal control problems, and even for "gap" formulations of robustness. |
This paper deals with the computational complexity, and in some cases undecidability, of several problems in nonlinear control. The objective is to compare the theoretical difficulty of solving such problems to the corresponding problems for linear systems. In particular, the problem of null-controllability for systems with saturations (of a "neural network" type) is mentioned, as well as problems regarding piecewise linear (hybrid) systems. A comparison of accessibility, which can be checked fairly simply by Lie-algebraic methods, and controllability, which is at least NP-hard for bilinear systems, is carried out. Finally, some remarks are given on analog computation in this context. |
Invited talk at the 1994 ICM. Paper deals with the notion of observables for nonlinear systems, and their role in realization theory, minimality, and several control and path planning questions. |
It is shown that the existence of a continuous control-Lyapunov function (CLF) is necessary and sufficient for null asymptotic controllability of nonlinear finite-dimensional control systems. The CLF condition is expressed in terms of a concept of generalized derivative (upper contingent derivative). This result generalizes to the non-smooth case the theorem of Artstein relating closed-loop feedback stabilization to smooth CLF's. It relies on viability theory as well as optimal control techniques. A "non-strict" version of the results, analogous to the LaSalle Invariance Principle, is also provided. |
We present a formula for a stabilizing feedback law under the assumption that a piecewise smooth control-Lyapunov function exists. The resulting feedback is continuous at the origin and smooth everywhere except on a hypersurface of codimension 1, assuming that certain transversality conditions are imposed there. |
This paper proposes a technique for the control of analytic systems with no drift. It is based on the generation of "nonsingular loops" which allow linearized controllability. Once such loops are available, it is possible to employ standard Newton or steepest descent methods. The theoretical justification of the approach relies on results on genericity of nonsingular controls as well as a simple convergence lemma. |
This paper develops in detail an explicit design for control under saturation limits for the linearized equations of longitudinal flight control for an F-8 aircraft, and tests the obtained controller on the original nonlinear model. |
A conference paper. Placed here because it was requested, but contains little that is not also contained in the survey on neural nets mentioned above. |
This paper shows how to extend recent results of Colonius and Kliemann, regarding connections between chaos and controllability, from continuous to discrete time. The extension is nontrivial because the results all rely on basic properties of the accessibility Lie algebra which fail to hold in discrete time. Thus, this paper first develops further results in nonlinear accessibility, and then shows how a theorem can be proved, which while analogous to the one given in the work by Colonius and Klieman, also exhibits some important differences. A counterexample is used to show that the theorem given in continuous time cannot be generalized in a straightforward manner. |
This paper shows the existence of (nonlinear) smooth dynamic feedback stabilizers for linear time invariant systems under input constraints, assuming only that open-loop asymptotic controllability and detectability hold. |
This paper introduces a subclass of Hamiltonian control systems motivated by mechanical models. It deals with time-optimal control problems. The main results characterize regions of the state space where singular trajectories cannot exist, and provide high-order conditions for optimality. |
It has been known for a long time that certain controllability properties are more difficult to verify than others. This article makes this fact precise, comparing controllability with accessibility, for a wide class of nonlinear continuous time systems. The original contribution is in formalizing this comparison in the context of computational complexity. (This paper placed here by special request.) |
This paper studies time-optimal control questions for a certain class of nonlinear systems. This class includes a large number of mechanical systems, in particular, rigid robotic manipulators with torque constraints. As nonlinear systems, these systems have many properties that are false for generic systems of the same dimensions. |
We show that, in general, it is impossible to stabilize a controllable system by means of a continuous feedback, even if memory is allowed. No optimality considerations are involved. All state spaces are Euclidean spaces, so no obstructions arising from the state space topology are involved either. For one dimensional state and input, we prove that continuous stabilization with memory is always possible. (This is an old conference paper, never published in journal form but widely cited nonetheless. Warning: file is very large, since it was scanned.) |
Internal reports |
This paper continues the study of a model which was introduced in earlier work by the authors to study spontaneous and induced evolution to drug resistance under chemotherapy. The model is fit to existing experimental data, and is then validated on additional data that had not been used when fitting. In addition, an optimal control problem is studied numerically. |
Since its introduction by Briat, Gupta and Khammash, the antithetic feedback controller design has attracted considerable attention in both theoretical and experimental systems biology. The case in which the plant is a two-dimensional linear system (making the closed-loop system a nonlinear four-dimensional system) has been analyzed in much detail. This system has a unique equilibrium but, depending on parameters, it may exhibit periodic orbits. This note shows that, for any parameter choices, every bounded trajectory satisfies a Poincare'-Bendixson property: the dynamics in the omega-limit set of any precompact solution is conjugate to the dynamics in a compact invariant subset of a two-dimensional Lipschitz dynamical system, thus precluding chaotic and other strange attractors. |
The primary factor limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. We have recently introduced a framework for quantifying the effects of induced and non-induced resistance to cancer chemotherapy . In this work, the control structure is precisely characterized as a concatenation of bang-bang and path-constrained arcs via the Pontryagin Maximum Principle and differential Lie techniques. A structural identfiability analysis is also presented, demonstrating that patient-specfic parameters may be measured and thus utilized in the design of optimal therapies prior to the commencement of therapy. |
We consider a compartmental model for ribosome flow during RNA translation, the Ribosome Flow Model (RFM). This model includes a set of positive transition rates that control the flow from every site to the consecutive site. It has been shown that when these rates are time-varying and jointly T-periodic, the protein production rate converges to a unique T-periodic pattern. Here, we study a problem that can be roughly stated as: can periodic rates yield a higher average production rate than constant rates? We rigorously formulate this question and show via simulations, and rigorous analysis in one simple case, that the answer is no. |
This note analyzes incoherent feedforward loops in signal processing and control. It studies the response properties of IFFL's to exponentially growing inputs, both for a standard version of the IFFL and for a variation in which the output variable has a positive self-feedback term. It also considers a negative feedback configuration, using such a device as a controller. It uncovers a somewhat surprising phenomenon in which stabilization is only possible in disconnected regions of parameter space, as the controlled system's growth rate is varied. |
The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as insulators which facilitate modular interconnections in biochemical networks. There we analyzed a simple model system in which a signal molecule regulates the transcription of one or more target proteins by interacting with their promoters. In this note, we consider the case of a protein with an active and an inactive form, and whose activation is controlled by the signal molecule. As in the original case, higher rates of energy consumption are required for better insulator performance. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html